```
    Started on Tuesday, 24 November 2020, 3:50 PM
            State Finished
Completed on Tuesday, 24 November 2020, 4:35 PM
    Time taken }45\mathrm{ mins }13\mathrm{ secs
        Grade 30.00 out of 30.00 (100%)
```

Question 1
Correct
Mark 1.00 out of 1.00

Let A be a 4×4-matrix such that $A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$, then

Select one:a. A is the zero matrixb. A is singular. \checkmarkc. The system $A x=0$ has only one solutiond. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$

The correct answer is: A is singular.

```
Question 2
Correct
Mark 1.00 out of 1.00
```

Let A be a 3×4 matrix which has a row of zeros, and let B be a 4×4 matrix, then $A B$ has a row of zeros.

Select one:a. True $\sqrt{ }$b. False

The correct answer is: True

If A is an $n \times n$-symmetric matrix, then A^{2} is symmetric.

Select one:

© a. True
b. False

The correct answer is: True
Question 4
Correct
Mark 1.00 out of 1.00

Let A be a 4×4 matrix. If the homogeneous system $A x=0$ has only the trivial solution then

Select one:

a. A is singularb. A is nonsingularc. $\operatorname{det}(A)=1$d. $A=0$

The correct answer is: A is nonsingular

```
Question 5
```

Correct
Mark 1.00 out of 1.00

If E is an elementary matrix of type III, then E^{T} is

Select one:

a. an elementary matrix of type Ib. an elementary matrix of type III \checkmark
c. not an elementary matrix
d. an elementary matrix of type II

The correct answer is: an elementary matrix of type III

If A is a singular matrix, then A can be written as a product of elementary matrices.

Select one:

a. Falseb. TrueThe correct answer is: False

Question 7
Correct
Mark 1.00 out of 1.00

If A, B, C are $n \times n$ nonsingular matrices, then $A^{2}-B^{2}=(A+B)(A-B)$.
Select one:
a. True

○ b. False

The correct answer is: False
Question 8
Correct
Mark 1.00 out of 1.00

If E is an elementary matrix then one of the following statements is not true

Select one:

a. E^{-1} is an elementary matrix
b. E^{T} is an elementary matrix.
c. E is nonsingular.
\bigcirc d. $E+E^{T}$ is an elementary matrix.

The correct answer is: $E+E^{T}$ is an elementary matrix.

If x_{0} is a solution of the nonhomogeneous system $A x=b$ and x_{1} is a solution of the homogeneous system $A x=0$. Then $x_{1}+x_{0}$ is a solution of

Select one:

a. the system $A x=2 b$b. the system $A x=0$
c. the system $A x=b$
d. the system $A x=A b$

The correct answer is: the system $A x=b$

Question 10
Correct
Mark 1.00 out of 1.00

If A, B are two square nonzero matrices and $A B=0$ then both A and B are singular

Select one:
a. Falseb. True \checkmark

The correct answer is: True

Question 11
Correct
Mark 1.00 out of 1.00

$$
\text { If }(A \mid b)=\left(\begin{array}{ccccc}
1 & 1 & 2 & \mid & 4 \\
2 & -1 & 2 & \mid & 6 \\
0 & 3 & 2 & \mid & 1
\end{array}\right) \text { is the augmented matrix of the system } A x=b \text { then the system has no solution }
$$

Select one:

a. Falseb. TrueThe correct answer is: True

If A, B are $n \times n$-skew-symmetric matrices $\left(A\right.$ is skew symmetric if $A^{T}=-A$), then $A B+B A$ is symmetric

Select one:

© a. True
b. False

The correct answer is: True

Question 13

Correct
Mark 1.00 out of 1.00

If the row echelon form of $(A \mid b)$ is $\left(\begin{array}{cccc:c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)$ then the general form of the solutions is given by
Select one:
a. $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$
b. $x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)$
c. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)$
d. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$

If a matrix B is obtained from A by multiplying a row of A by a real number c, then $|A|=c|B|$.

Select one:

a. Falseb. TrueThe correct answer is: False

```
Question 15
Correct
Mark 1.00 out of 1.00
```

If A is a nonsingular 3×3-matrix, then the reduced row echelon form of A has no row of zeros.

Select one:

a. Trueb. FalseThe correct answer is: True

Question 16
Correct
Mark 1.00 out of 1.00

If A is a 4×3 matrix such that $A x=0$ has only the zero solution, and $b=\left(\begin{array}{l}1 \\ 3 \\ 2 \\ 0\end{array}\right)$, then the system $A x=b$

Select one:
a. has exactly one solutionb. is either inconsistent or has an infinite number of solutionsc. is either inconsistent or has one solution \downarrowd. is inconsistent

The correct answer is: is either inconsistent or has one solution

Let U be an $n \times n$-matrix in reduced row echelon form and $U \neq I$, then

Select one:

a. $\operatorname{det}(U)=1$
b. U is the zero matrix
c. The system $U x=0$ has only the zero solution.
d. The system $U x=0$ has infinitely many solutions

The correct answer is: The system $U x=0$ has infinitely many solutions

Question 18

Correct
Mark 1.00 out of 1.00

If A is an $n \times n$ matrix and the system $A x=b$ has infinitely many solutions, then

Select one:a. A is symmetricb. A has a row of zeros
© c. A singular
d. A is nonsingular

The correct answer is: A singular

Let $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & 6 & 4\end{array}\right)$, then $\operatorname{det}(A)=$

Select one:

a. 5
-b. 0
○ c. 10
d. 9

The correct answer is: 10

Question 20

Correct
Mark 1.00 out of 1.00

The adjoint of the matrix $\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)$ is

Select one:

a. $\left(\begin{array}{cc}-5 & 3 \\ 2 & -1\end{array}\right)$
b. $\left(\begin{array}{cc}-2 & 1 \\ 5 & -3\end{array}\right)$
) c. $\left(\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right)$
d. $\left(\begin{array}{cc}-3 & 5 \\ 1 & -2\end{array}\right)$

The correct answer is: $\left(\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right)$

If A is a 3×3 matrix such that $\operatorname{det}(A)=2$, then $\operatorname{det}(3 A)=6$

Select one:

a. True
© b. False

The correct answer is: False

Question 22
Correct
Mark 1.00 out of 1.00

In the linear system $A x=b$, if $b=a_{1}=a_{2}+3 a_{4}$ then the system $A x=b$ has infinite solutions.

Select one:

a. False
()b. True

The correct answer is: True

Question 23

Correct
Mark 1.00 out of 1.00

$$
\text { If } A B=A C \text {, and }|A| \neq 0 \text {, then }
$$

Select one:
a. $A=0$
b. $B \neq C$
c. $A=C$
d. $B=C$.

The correct answer is: $B=C$.

If A is a nonsingular and symmetric matrix, then

Select one:

© a. A^{-1} is nonsingular and symmetric
b. A^{-1} is nonsingular and not symmetric
c. A^{-1} is singular and symmetric
d. A^{-1} is singular and not symmetric

The correct answer is: A^{-1} is nonsingular and symmetric

Question 25

Correct
Mark 1.00 out of 1.00

If A is a 3×3 matrix with $\operatorname{det}(A)=2$. Then $\operatorname{det}(\operatorname{adj}(A))=$

Select one:
© a. 4.
\checkmark
b. 2 .
c. -2 .
d. -4 .

The correct answer is: 4 .

$$
\text { If }(A \mid b)=\left(\begin{array}{ccc|c}
1 & 2 & -1 & \mid \\
2 & 3 & 1 & 0 \\
1 & 1 & \alpha & -1 \\
2
\end{array}\right) \text {, then the system is inconsistent if }
$$

Select one:

a. $\alpha \neq 2$ and β any numberb. $\alpha=2$ and $\beta=-1$
c. $\alpha \neq 2$ and $\beta \neq-1$
d. $\alpha=2$ and $\beta \neq-1$

The correct answer is: $\alpha=2$ and $\beta \neq-1$

Question 27

Correct
Mark 1.00 out of 1.00

If $A B=0$, where A and B are $n \times n$ nonzero matrices. Then

Select one:

a. either $A=0$ or $B=0$b. either A or B is singular
c. both A, B are nonsingular.
© d. both A, B are singular.

The correct answer is: both A, B are singular.

Question 28

Correct

Mark 1.00 out of 1.00

If y, z are solutions to $A x=b$, then $\frac{1}{3} y+\frac{3}{4} z$ is a solution of the system $A x=b$.

Select one:

a. Trueb. FalseLet $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & a & 1 \\ 1 & 1 & 2\end{array}\right)$. the value(s) of a that make A nonsingular

Select one:

© a. $a \neq 1$
b. $a=\frac{1}{2}$
c. $a=1$
d. $a \neq \frac{1}{2}$

The correct answer is: $a \neq 1$

Question 30
Correct
Mark 1.00 out of 1.00

Let $(1,2,0)^{T}$ and $(2,1,1)^{T}$ be the first two columns of a 3×3 matrix A and $(1,1,1)^{T}$ be a solution of the system $A x=(2,1,3)^{T}$. Then the third column of the matrix A is

Select one:

© a. $(-1,-2,2)^{T}$.
b. $(-1,-1,2)^{T}$.
c. $(1,1,0)^{T}$.
d. $(4,-1,1)^{T}$.

The correct answer is: $(-1,-2,2)^{T}$.

4 Announcements

Jump to...

```
        Started on Tuesday, 24 November 2020, 3:50 PM
        State Finished
        Completed on Tuesday, 24 November 2020, 4:53 PM
        Time taken 1 hour 2 mins
            Grade 28.00 out of 30.00 (93%)
```

Question 1
Correct
Mark 1.00 out of
1.00

```
An \(n \times n\) matrix \(A\) is invertible if and only if
Select one:
a. \(|A|=0\)
b. \(A x=0\) has a nonzero solution
c. \(A=I\)
- d. there exists a matrix \(B\) such that \(A B=I\)
```

The correct answer is: there exists a matrix B such that $A B=I$

Question 2
Correct
Mark 1.00 out of
1.00
$(0,0,0)^{T}$ is a linear combination of the vectors $(1,2,3)^{T},(1,4,1)^{T},(2,3,1)^{T}$

Select one:

- a. True $\sqrt{ }$
b. False

The correct answer is: True
Question 3
Correct
Mark 1.00 out of
1.00

In the $n \times n$-linear system $A x=b$, if A is singular and b is a linear combination of the columns of A then the system has

Select one:
a. exactly two solutions
b. no solution
c. a unique solution

- d. infinitely many solutions \downarrow

The correct answer is: infinitely many solutions

Question 4	If y, z are solutions to $A x=b$, then $y+z$ is a solution of the system $A x=0$.
Correct	
Mark 1.00 out of	Select one:
1.00	a. True
	(b. False $\sqrt{ }$

The correct answer is: False

Question 5
Incorrect
Mark 0.00 out of
1.00 \qquad

Question 6
Correct
Mark 1.00 out of
1.00 \qquad

Question 7
Correct
Mark 1.00 out of
1.00

Any two $n \times n$-singular matrices are row equivalent.

Select one:
a. False
(b) True x

The correct answer is: False

If A is a 4×3-matrix, $b \in \mathbb{R}^{4}$, and the system $A x=b$ is consistent, then $A x=b$ has a unique solution.

Select one:
a. True
(b. False \checkmark

The correct answer is: False

If $(A \mid b)=\left(\begin{array}{ccc|c}1 & 2 & -1 & 0 \\ 2 & 3 & 1 & -1 \\ 1 & 1 & \alpha & \beta\end{array}\right)$, then the system has only one solution if
Select one:

- a. $\alpha \neq 2$ and β any number
b. $\alpha \neq 2$ and $\beta \neq-1$
c. $\alpha=2$ and $\beta=-1$
d. $\alpha=2$ and $\beta \neq-1$

The correct answer is: $\alpha \neq 2$ and β any number

Question $\mathbf{8}$
Correct
Mark 1.00 out of
1.00

Question 9
Correct
Mark 1.00 out of 1.00

If A is a nonsingular 3×3-matrix, then the reduced row echelon form of A has no row of zeros.
Select one:
a. False

- b. True V

The correct answer is: True

If E is an elementary matrix then one of the following statements is not true

Select one:
a. E^{-1} is an elementary matrix.
b. E is nonsingular.
c. E^{T} is an elementary matrix.

- d. $E+E^{T}$ is an elementary matrix. \checkmark

Question 10
Correct
Mark 1.00 out of
1.00

If A is a 3×3 matrix with $\operatorname{det}(A)=-2$. Then $\operatorname{det}(\operatorname{adj}(A))=$
Select one:

- a. 4.
b. -4 .
c. -8 .
d. 8 .

The correct answer is: 4 .

Question 11
Correct
Mark 1.00 out of
1.00

Question 12
Correct
Mark 1.00 out of
1.00

If A is singular and B is nonsingular $n \times n$-matrices, then $A B$ is

Select one:

- a. singular \vee
b. may or may not be singular
c. nonsingular

The correct answer is: singular

If $(A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 1 & 1 & 2 & 5\end{array}\right)$, then the system $A x=b$ is inconsistent
Select one:

- a. True \checkmark
b. False

The correct answer is: True

Question 13
Correct
Mark 1.00 out of
1.00

If A is a singular $n \times n$-matrix, $b \in \mathbb{R}^{n}$, then the system $A x=b$
Select one:

- a. has either no solution or an infinite number of solutions \downarrow
b. has infinitely many solutions.
- c. has a unique solution
d. is inconsistent

The correct answer is: has either no solution or an infinite number of solutions

Question 14
Correct
Mark 1.00 out of
1.00

If A is symmetric and skew symmetric then $A=0$. (A is skew symmetric if $A=-A^{T}$).

Select one:

- a. True \checkmark
b. False

Question 15
Correct
Mark 1.00 out of
1.00

1.00

If $A=L U$ is the $L U$-factorization of a matrix A, and A is singular, then

Select one:
a. L and U are both singular

- b. U is singular and L is nonsigular
\checkmark
c. L and U are both nonsingular
d. L is singular and U is nonsigular

The correct answer is: U is singular and L is nonsigular

```
Question 16
Correct
Mark 1.00 out of
1.00
1.00
```

\square

Question 17
Correct
Mark 1.00 out of
1.00

Question 18
Correct
Mark 1.00 out of
1.00

If A and B are singular matrices, then $A+B$ is also singular.

Select one:

- a. False \checkmark
b. True

The correct answer is: False

If A is a singular matrix, then A can be written as a product of elementary matrices.

Select one:

- a. False \checkmark
b. True

The correct answer is: False

Let $(1,2,0)^{T}$ and $(2,1,1)^{T}$ be the first two columns of a 3×3 matrix A and $(1,1,1)^{T}$ be a solution of the system $A x=(4,4,5)^{T}$. Then the third column of the matrix A is

Select one:

- a. $(1,1,4)^{T}$.
\checkmark
b. $(4,-1,1)^{T}$.
c. $(-1,-1,-4)^{T}$.
d. $(-1,-2,1)^{T}$.

The correct answer is: $(1,1,4)^{T}$.

Question 19
Correct
Mark 1.00 out of
1.00

Let A be a 3×4 matrix which has a row of zeros, and let B be a 4×4 matrix, then $A B$ has a row of zeros.

Select one:

- a. True \downarrow
b. False

Let A be a 4×4-matrix such that $A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$, then
Select one:
a. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$
b. A is the zero matrix
c. The system $A x=0$ has only one solution

- d. A is singular. \checkmark

The correct answer is: A is singular.

```
Question 21
Correct
Mark 1.00 out of
1.00
```

estion 22
Correct
Mark 1.00 out of
1.00

Let $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & -1 & 3\end{array}\right)$,then $\operatorname{det}(A)=$
Select one:
(-) a. 2
b. 3
c. 5

- d. 0

The correct answer is: 2

```
Question 23
Correct
Mark 1.00 out of
1.00
```

If the row echelon form of $(A \mid b)$ is $\left(\begin{array}{cccc:c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)$ then the general form of the solutions is given by

Select one:
a. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)$
b. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)$
© c. $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$
d. $x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$

Question 24
Correct
Mark 1.00 out of
1.00

If A, B are $n \times n$-skew-symmetric matrices $\left(A\right.$ is skew symmetric if $\left.A^{T}=-A\right)$, then $A B+B A$ is symmetric Select one:

- a. True \vee
b. False

The correct answer is: True

Question 25
Correct
Mark 1.00 out of 1.00

Let A be a 4×3-matrix with $a_{2}-a_{3}=0$. If $b=a_{1}+a_{2}+a_{3}$, where a_{j} is the j th column of A, then the system $A x=b$ will have infinitely many solutions.

Select one:

a. False

- b. True \checkmark

The correct answer is: True
Question 26
Correct
Mark 1.00 out of
1.00

If A is a 3×3-matrix and the system $A x=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)$ has a unique solution, then the system $A x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

Select one:
a. is inconsistent
© b. has only the zero solution. \downarrow
c. has infinitely many solutions

The correct answer is: has only the zero solution.
Question 27
Incorrect
Mark 0.00 out of
1.00
1.00

If $A B=0$, where A and B are $n \times n$ nonzero matrices. Then
Select one:
© a. either A or B is singular \times
b. both A, B are singular.
c. both A, B are nonsingular.
d. either $A=0$ or $B=0$

The correct answer is: both A, B are singular.

Question 28
Correct
Mark 1.00 out of
1.00

1.00

If x_{0} is a solution of the nonhomogeneous system $A x=b$ and x_{1} is a solution of the homogeneous system $A x=0$. Then $x_{1}+x_{0}$ is a solution of

Select one:
a. the system $A x=0$
b. the system $A x=2 b$
c. the system $A x=A b$
(d. the system $A x=b$
\checkmark

The correct answer is: the system $A x=b$

Question 29
Correct
Mark 1.00 out of
1.00

If A is a nonsingular $n \times n$ matrix, $b \in \mathbb{R}^{n}$, then

Select one:
a. The system $A x=b$ is inconsistent
b. The system $A x=b$ has only two solutions
© c. The system $A x=b$ has a unique solution
d. The system $A x=b$ has infinitely many solutions

The correct answer is: The system $A x=b$ has a unique solution

```
Question 30
Correct
Mark 1.00 out of
1.00
The adjoint of the matrix }(\begin{array}{cc}{-1}&{2}\\{1}&{3}\end{array})\mathrm{ is
Select one:
a. \(\left(\begin{array}{cc}-1 & 1 \\ 2 & -3\end{array}\right)\)
b. \(\left(\begin{array}{cc}1 & -2 \\ -1 & -3\end{array}\right)\)
(.) c. \(\left(\begin{array}{cc}3 & -2 \\ -1 & -1\end{array}\right)\)
d. \(\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right)\)
The correct answer is: \(\left(\begin{array}{cc}3 & -2 \\ -1 & -1\end{array}\right)\)
```

Jump to..

Data retention summary.
Switch to the standard theme

```
Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta / General / First exam
```

Started on	Tuesday, 24 November 2020, 3:51 PM
State	Finished
Completed on	Tuesday, 24 November 2020, 4:48 PM
Time taken	57 mins 9 secs
Grade	28.00 out of $30.00(93 \%)$

Question 1
Correct
Mark 1.00 out of
1.00

Let $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & 4 & 3\end{array}\right)$,then $\operatorname{det}(A)=$
Select one:
a. 0
b. 9
c. 5

- d. 7
\checkmark

The correct answer is: 7

Question 2
Correct
Mark 1.00 out of
1.00

If A is a 2×3-matrix, and $b=a_{2}$ (second column of A), then a solution to the system $A x=b$ is

Select one:
a. $x=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$
b. $x=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
с. $x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$

- d. $x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

```
Question 3
Correct
Mark 1.00 out of
1.00
    If }A\mathrm{ is a 2 }\times2\mathrm{ matrix with }\operatorname{det}(A)=-2\mathrm{ . Then }\operatorname{det}(\operatorname{adj}(A))
    Select one:
    a.2.
    (.) b. -2.
    c. -4.
    d. 4.
The correct answer is: -2.
```

```
Question 4
    If }A,B,C\mathrm{ are }n\timesn\mathrm{ nonsingular matrices, then }\mp@subsup{A}{}{2}-\mp@subsup{B}{}{2}=(A+B)(A-B
Correct
Mark 1.00 out of
1.00
Select one:
- a. False v
b. True
```

The correct answer is: False

```
Question 5
If \(A\) is a singular matrix, then \(A\) can be written as a product of elementary matrices.
Correct
Mark 1.00 out of
1.00
- a. False \(\checkmark\)
b. True
```

The correct answer is: False

Mark 1.00 out of
1.00

Select one:
a. $\left(\begin{array}{cc}5 & -1 \\ 2 & 6\end{array}\right)$

- b. $\left(\begin{array}{cc}6 & -2 \\ 1 & 5\end{array}\right)$
c. $\left(\begin{array}{cc}-5 & -1 \\ 2 & -6\end{array}\right)$
d. $\left(\begin{array}{cc}-6 & 2 \\ -1 & -5\end{array}\right)$

The correct answer is: $\left(\begin{array}{cc}6 & -2 \\ 1 & 5\end{array}\right)$

```
Question }
Correct
Mark 1.00 out of
1.00
```

If A and B are $n \times n$ matrices such that $A x \neq B x$ for all nonzero $x \in \mathbb{R}^{n}$. Then
Select one:
a. A and B are singular.
b. $A-B$ is singular.
c. A and B are nonsingular.
© d. $A-B$ is nonsingular.
\checkmark

The correct answer is: $A-B$ is nonsingular.

```
Question 8
Incorrect
Mark 0.00 out of
1.00
-
(b) True \(\mathbf{x}\)
```

The correct answer is: False

Question 9
Correct
Mark 1.00 out of
1.00

Let A be a 4×4-matrix such that $A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$, then
Select one:
a. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$
b. The system $A x=0$ has only one solution
(-) c. A is singular.
d. A is the zero matrix

The correct answer is: A is singular.

Question 10
Correct
Mark 1.00 out of
1.00

If A is symmetric and skew symmetric then $A=0$. (A is skew symmetric if $A=-A^{T}$).
Select one:
a. False
© b. True \checkmark

The correct answer is: True

An $n \times n$ matrix A is invertible if and only if

Select one:

- a. there exists a matrix B such that $A B=I$
b. $A=I$
c. $|A|=0$
d. $A x=0$ has a nonzero solution

The correct answer is: there exists a matrix B such that $A B=I$
Question 12
Correct
Mark 1.00 out of
1.00

Question 13
Correct
Mark 1.00 out of
1.00

If A, B, C are $n \times n$-matrices with A nonsigular and $A B=A C$, then $B=C$
Select one:
a. False

- b. True \checkmark

The correct answer is: True

In the square linear system $A x=b$, if A is singular and b is not a linear combination of the columns of A then the system

Select one:
a. has a unique solution
b. has infinitely many solutions
c. can not tell

- d. has no solution \downarrow

The correct answer is: has no solution

```
Question 14
Correct
Mark 1.00 out of
1.00
```

Any two $n \times n$-singular matrices are row equivalent.

Select one:

- a. False
b. True

The correct answer is: False

Question 15
Correct
Mark 1.00 out of
1.00

If A is a singular $n \times n$-matrix, $b \in \mathbb{R}^{n}$, then the system $A x=b$

Select one:
a. is inconsistent
b. has a unique solution

- c. has either no solution or an infinite number of solutions
d. has infinitely many solutions.

```
Question }1
Correct
Mark 1.00 out of 1.00
```

Let A be a 3×4 matrix which has a row of zeros, and let B be a 4×4 matrix, then $A B$ has a row of zeros.
Select one:

- a. True $\sqrt{ }$
b. False

The correct answer is: True

```
Question 17
Correct
Mark 1.00 out of
1.00
```

If E is an elementary matrix of type III, then E^{T} is

Select one:
a. an elementary matrix of type II
b. an elementary matrix of type I

- c. an elementary matrix of type III \downarrow
d. not an elementary matrix

The correct answer is: an elementary matrix of type III

Question 18
Correct
Mark 1.00 out of 1.00

If the row echelon form of $(A \mid b)$ is $\left(\begin{array}{cccc:c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)$ then the general form of the solutions is given by
Select one:
a. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)$
b. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)$
© c. $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$
d. $x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$

Question 19
Incorrect
Mark 0.00 out of
1.00

If $(A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 0 & 3 & 2 & 1\end{array}\right)$ is the augmented matrix of the system $A x=b$ then the system has no solution

Select one:

- a. False \boldsymbol{x}
b. True

The correct answer is: True
Question 20
Correct
Mark 1.00 out of
1.00

If $(A \mid b)=\left(\begin{array}{ccc|c}1 & 2 & -1 & 0 \\ 2 & 3 & 1 & -1 \\ 1 & 1 & \alpha & \beta\end{array}\right)$, then the system is inconsistent if
Select one:
a. $\alpha \neq 2$ and $\beta \neq-1$
b. $\alpha \neq 2$ and β any number
c. $\alpha=2$ and $\beta=-1$
(0) d. $\alpha=2$ and $\beta \neq-1$

The correct answer is: $\alpha=2$ and $\beta \neq-1$

Question 21
Correct
Mark 1.00 out of
1.00

Let $(1,2,0)^{T}$ and $(2,1,1)^{T}$ be the first two columns of a 3×3 matrix A and $(1,1,1)^{T}$ be a solution of the system $A x=(5,2,4)^{T}$. Then the third column of the matrix A is

Select one:
a. $(-2,1,-3)^{T}$.
b. $(1,-1,-4)^{T}$.
© c. $(2,-1,3)^{T}$.
\checkmark
d. $(1,-1,4)^{T}$.

The correct answer is: $(2,-1,3)^{T}$.

Question 22
Correct
Mark 1.00 out of 1.00

If A is a nonsingular $n \times n$ matrix, then

Select one:

(a. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$.
b. $\operatorname{det}(A)=1$
c. There is a singular matrix C such that $A=C I$.
d. The system $A x=0$ has a nontrivial (nonzero) solution.

The correct answer is: There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$.

```
Question 23
Correct
Mark 1.00 out of
1.00
```

 If \(A\) is a symmetric \(n \times n\)-matrix and \(P\) any \(n \times n\)-matrix, then \(P A P^{T}\) is
 Select one:

- a. symmetric \checkmark
b. not defined
c. singular
d. not symmetric

The correct answer is: symmetric

```
Question 24
Correct
Mark 1.00 out of
1.00
If \(A\) is an \(n \times n\) matrix and the system \(A x=b\) has infinitely many solutions, then
Select one:
a. \(A\) is symmetric
b. \(A\) has a row of zeros
- c. \(A\) singular
d. \(A\) is nonsingular
```

The correct answer is: A singular

```
Question 25
Correct
Mark 1.00 out of
1.00
If }A\mathrm{ is a 3 }\times3\mathrm{ matrix such that }\operatorname{det}(A)=2\mathrm{ , then det (3A)=6
Select one:
    O}\mathrm{ a. False 
    b. True
```

The correct answer is: False

Question 26
Correct
Mark 1.00 out of
1.00

If A, B, C are 3×3-matrices, $\operatorname{det}(A)=9, \operatorname{det}(B)=2, \operatorname{det}(C)=3$, then $\operatorname{det}\left(3 C^{T} B A^{-1}\right)=$ Select one:
a. 6

- b. 18
c. 16
- d. 2

The correct answer is: 18

Question 27
Correct
Mark 1.00 out of 1.00

If A and B are singular matrices, then $A+B$ is also singular.

Select one:

- a. False \downarrow
b. True

Question 28
Correct
Mark 1.00 out of
1.00

In the $n \times n$-linear system $A x=b$, if A is singular and b is a linear combination of the columns of A then the system has

Select one:
a. no solution
b. a unique solution

- c. infinitely many solutions \checkmark
d. exactly two solutions

The correct answer is: infinitely many solutions

Question 29
Correct
Mark 1.00 out of
1.00
:---
a. False
b. True

The correct answer is: False
Question 30
Correct
Mark 1.00 out of
1.00

If A is a 3×3-matrix and the system $A x=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)$ has a unique solution, then the system $A x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
Select one:
a. has infinitely many solutions

- b. has only the zero solution. \downarrow
c. is inconsistent

The correct answer is: has only the zero solution.

Mark 0.00 out of
1.00

If A is a 4×3-matrix, $b \in \mathbb{R}^{\mathbb{4}}$, and the system $A x=b$ is consistent, then $A x=b$ has a unique solution.

Select one:
a. False

- b. True x

The correct answer is: False
" A 'sa singular matix, then the ssitem $A x=b$ has infinte unube of fosutions

Select one:

- a. True \boldsymbol{x}
b. False

Question $\mathbf{4}$
Correct
Mark 1.00 out of
1.00

Question 5
Correct
Mark 1.00 out of
1.00
1.00

Let $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & 1 & 3\end{array}\right)$,then $\operatorname{det}(A)=$
Select one:

- a. 4
b. 0
c. 8
d. 1

The correct answer is: 4
Question 6
Correct
Mark 1.00 out of
1.00

If $(A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 1 & 1 & 2 & 5\end{array}\right)$, then the system $A x=b$ is inconsistent

Select one:

a. False

- b. True \checkmark

The correct answer is: True

Question 7
Incorrect
Mark 0.00 out of
1.00

If a matrix B is obtained from A by multiplying a row of A by a real number c, then $|A|=c|B|$.
Select one:
a. False
© b. True \mathbf{x}

The correct answer is: False
Question 8
Incorrect
Mark 0.00 out of
1.00
1.00

In the square linear system $A x=b$, if A is singular and b is not a linear combination of the columns of A then the system

Select one:
a. can not tell
b. has a unique solution

- c. has infinitely many solutions \boldsymbol{x}
d. has no solution

The correct answer is: has no solution
Question 9
Correct
Mark 1.00 out of
1.00

If E is an elementary matrix of type III, then E^{T} is

Select one:
a. not an elementary matrix
© b. an elementary matrix of type III \checkmark
c. an elementary matrix of type I
d. an elementary matrix of type II

The correct answer is: an elementary matrix of type III
Question 10
Correct
Mark 1.00 out of
1.00

If $A B=0$, where A and B are $n \times n$ nonzero matrices. Then

Select one:
a. both A, B are nonsingular.

- b. both A, B are singular.
c. either A or B is singular
d. either $A=0$ or $B=0$

The correct answer is: both A, B are singular.
Question 11
Correct
Mark 1.00 out of
1.00

If A, B are $n \times n$-skew-symmetric matrices $\left(A\right.$ is skew symmetric if $A^{T}=-A$), then $A B+B A$ is symmetric Select one:
a. False

- b. True \checkmark

The correct answer is: True

Question 12
Correct
Mark 1.00 out of
1.00

If A is a 3×3 matrix such that $\operatorname{det}(A)=2$, then $\operatorname{det}(3 A)=6$

Select one:
a. True

- b. False \checkmark

Question 13
Correct
Mark 1.00 out of
1.00

The adjoint of the matrix $\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)$ is

Select one:
a. $\left(\begin{array}{cc}-5 & 3 \\ 2 & -1\end{array}\right)$
b. $\left(\begin{array}{cc}-3 & 5 \\ 1 & -2\end{array}\right)$
c. $\left(\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right)$
d. $\left(\begin{array}{cc}-2 & 1 \\ 5 & -3\end{array}\right)$

The correct answer is: $\left(\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right)$

Question 14
Correct
Mark 1.00 out of
1.00

Let $(1,2,0)^{T}$ and $(2,1,1)^{T}$ be the first two columns of a 3×3 matrix A and $(1,1,1)^{T}$ be a solution of the system $A x=(2,1,3)^{T}$. Then the third column of the matrix A is

Select one:

a. $(1,1,0)^{T}$.

- b. $(-1,-2,2)^{T}$.
c. $(4,-1,1)^{T}$.
d. $(-1,-1,2)^{T}$.

The correct answer is: $(-1,-2,2)^{T}$.

Question 15
Correct
Mark 1.00 out of
1.00
$(0,0,0)^{T}$ is a linear combination of the vectors $(1,2,3)^{T},(1,4,1)^{T},(2,3,1)^{T}$
Select one:

- a. True \checkmark
b. False

The correct answer is: True
Question 16
Correct
Mark 1.00 out of
1.00

Let A be a 4×4-matrix such that $A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$, then
Select one:
a. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$
(-) b. A is singular.
c. A is the zero matrix
d. The system $A x=0$ has only one solution

Question 17
Incorrect
Mark 0.00 out of
1.00
\qquad

Question 18
Incorrect
Mark 0.00 out of
1.00

If A is a 4×3 matrix such that $A x=0$ has only the zero solution, and $b=\left(\begin{array}{l}1 \\ 3 \\ 2 \\ 0\end{array}\right)$, then the system $A x=b$

Select one:
a. is either inconsistent or has an infinite number of solutions
b. is inconsistent
c. is either inconsistent or has one solution

- d. has exactly one solution \mathbf{x}

The correct answer is: is either inconsistent or has one solution
Question 19
Correct
Mark 1.00 out of
1.00
1.00

If x_{0} is a solution of the nonho
Then $x_{1}+x_{0}$ is a solution of
Select one:
a. the system $A x=0$
b. the system $A x=2 b$
c. the system $A x=A b$
d. the system $A x=b$
a

The correct answer is: the system $A x=b$

Question 20
Correct
Mark 1.00 out of
1.00

If A, B are two square nonzero matrices and $A B=0$ then both A and B are singular

Select one:
a. False
(b. True V

```
Question 21
Incorrect
Mark 0.00 out of
1.00
```

Question 22
Correct
Mark 1.00 out of
1.00
Question 23
Correct
Mark 1.00 out of
1.00

If A is a nonsingular $n \times n$ matrix, $b \in \mathbb{R}^{n}$, then Select one:
a. The system $A x=b$ is inconsistent
b. The system $A x=b$ has infinitely many solutions
c. The system $A x=b$ has only two solutions

- d. The system $A x=b$ has a unique solution
correct answer is: The system $A x=b$ has a unique solution

Question 24
Correct
Mark 1.00 out of
1.00

If A, B are $n \times n$ symmetric matrices then $A B$ is symmetric.

Select one:

- a. False V
b. True

The correct answer is: False
Question 25
Correct
Mark 1.00 out of
1.00
1.00

If A is a 2×3-matrix, and $b=a_{2}$ (second column of A), then a solution to the system $A x=b$ is

Select one:
a. $x=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$
b. $x=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$

- c. $x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
d. $x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

```
Question 26
Incorrect
Mark 0.00 out of
1.00
```

If A and B are $n \times n$ matrices such that $A x \neq B x$ for all nonzero $x \in \mathbb{R}^{n}$. Then

Select one:
a. $A-B$ is nonsingular.

- b. A and B are nonsingular. \mathbf{x}
c. $A-B$ is singular.
d. A and B are singular.

The correct answer is: $A-B$ is nonsingular.

Question 27
Correct
Mark 1.00 out of
1.00

If A is a nonsingular $n \times n$ matrix, then

Select one:

- a. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$.
b. There is a singular matrix C such that $A=C I$.
c. The system $A x=0$ has a nontrivial (nonzero) solution.
d. $\operatorname{det}(A)=1$

The correct answer is: There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$.

```
Question 28
Correct
Mark 1.00 out of
1.00
```

Any elementary matrix is nonsigular
Select one:
a. False
- b. True \checkmark
The correct answer is: True
Question 29
Correct
Mark 1.00 out of
1.00

If A is singular and B is nonsingular $n \times n$-matrices, then $A B$ is Select one:

- a. singular \downarrow
b. may or may not be singular
c. nonsingular

The correct answer is: singular
Question 30
Correct
Mark 1.00 out of
1.00

In the $n \times n$-linear system $A x=b$, if A is singular and b is a linear combination of the columns of A then the system has

Select one:
a. exactly two solutions
b. no solution
c. a unique solution

- d. infinitely many solutions \checkmark

The correct answer is: infinitely many solutions
\leftarrow Announcements
Jump to...

```
        Started on Tuesday, 24 November 2020, 4:00 PM
        State Finished
    Completed on Tuesday, 24 November 2020, 5:07 PM
        Time taken 1 hour 7 mins
            Grade 24.00 out of 30.00 (80%)
```

Question 1
Correct
Mark 1.00 out of
1.00

```
f \(A, B, C\) are \(3 \times 3\)-matrices, \(\operatorname{det}(A)=9, \operatorname{det}(B)=2, \operatorname{det}(C)=3\), then \(\operatorname{det}\left(3 C^{T} B A^{-1}\right)=\)
Select one:
a. 6
b. 16
(-) c. 18
d. 2
```

The correct answer is: 18

Question 2
Correct
Mark 1.00 out of
1.00

Let $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & -2 & 3\end{array}\right)$, then $\operatorname{det}(A)=$
Select one:

- a. 1
\checkmark
b. 9
c. 7
d. 0

The correct answer is: 1

Question 3
Correct
Mark 1.00 out of
1.00

The adjoint of the matrix $\left(\begin{array}{cc}4 & 1 \\ 2 & -1\end{array}\right)$ is
Select one:
(-)..$\left(\begin{array}{cc}-1 & -1 \\ -2 & 4\end{array}\right)$
b. $\left(\begin{array}{ll}-1 & -2 \\ -3 & -5\end{array}\right)$
c. $\left(\begin{array}{cc}4 & -1 \\ -2 & -1\end{array}\right)$
d. $\left(\begin{array}{cc}-1 & 2 \\ 1 & -4\end{array}\right)$
Question 4
Correct
Mark 1.00 out of
1.00

If $A=\left(\begin{array}{ccc}1 & 4 & -1 \\ 2 & 9 & 2 \\ -3 & -12 & 3\end{array}\right)$ then the lower triangular matrix L in the $L U$-facrorization of A is given by

Select one:

- a. $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1\end{array}\right)$
b. $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 0\end{array}\right)$
c. $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1\end{array}\right)$
d. $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 0\end{array}\right)$

The correct answer is: $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1\end{array}\right)$

Question 5
 Correct
 Mark 1.00 out of
 1.00

Correct
Mark 1.00 out of
1.00

Any two $n \times n$-singular matrices are row equivalent.

Select one:
a. True
© b. False \checkmark

The correct answer is: False

If A is a nonsingular and symmetric matrix, then
Select one:
a. A^{-1} is singular and symmetric
b. A^{-1} is singular and not symmetric

- c. A^{-1} is nonsingular and symmetric
d. A^{-1} is nonsingular and not symmetric

The correct answer is: A^{-1} is nonsingular and symmetric

```
Question 7
Correct
Mark 1.00 out of
1.00
```

Question 8
Incorrect
Mark 0.00 out of
1.00

$$
00
$$

Correct
Mark 1.00 out of
1.00

Question 10
Correct
Mark 1.00 out of
1.00

Let $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & a & 1 \\ 1 & 1 & 2\end{array}\right)$. the value(s) of a that make A nonsingular
Select one:
a. $a \neq \frac{1}{2}$
b. $a=1$
c. $a=\frac{1}{2}$
(- d. $a \neq 1$
\checkmark

The correct answer is: $a \neq 1$

Mark 0.00 out of 1.00

If A, B are $n \times n$-skew-symmetric matrices $\left(A\right.$ is skew symmetric if $\left.A^{T}=-A\right)$, then $A B+B A$ is symmetric

Select one:
a. True
(b. False \boldsymbol{x}

Question 12
Correct
Mark 1.00 out of
1.00

If A is a singular matrix, then A^{T} is also singular.

Select one:

- a. True \checkmark
b. False

The correct answer is: True

Question 13
Correct
Mark 1.00 out of
1.00

Question 14
Correct
Mark 1.00 out of
1.00

If A is a 4×4-matrix and $x=\left(\begin{array}{l}2 \\ 3 \\ 0 \\ 1\end{array}\right)$ is a solution to the system $A x=0$, then A is singular.
Select one:
a. False

- b. True \checkmark

The correct answer is: True

Question 15
Correct
Mark 1.00 out of 1.00

If A and B are $n \times n$ matrices such that $A x \neq B x$ for all nonzero $x \in \mathbb{R}^{n}$. Then
Select one:
a. $A-B$ is singular.

If A is a 4×3-matrix, $b \in \mathbb{R}^{4}$, and the system $A x=b$ is consistent, then $A x=b$ has a unique solution.

Select one:
a. True

- b. False \checkmark

The correct answer is: False
b. A and B are nonsingular.

- c. $A-B$ is nonsingular.
d. A and B are singular.

The correct answer is: $A-B$ is nonsingular.

Question 16
Correct
Mark 1.00 out of
1.00

If $A=\left(\begin{array}{ccc}1 & -2 & 5 \\ 4 & -11 & 8 \\ -3 & 3 & -27\end{array}\right)$ and $b=\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$, then the system $A x=b$ is consistent if and only if
Select one:
a. $7 b_{1}-b_{2}+b_{3} \neq 1$
b. $7 b_{1}-b_{2}+b_{3} \neq 0$
c. $7 b_{1}-b_{2}+b_{3}=1$
(-). $7 b_{1}-b_{2}+b_{3}=0$

The correct answer is: $7 b_{1}-b_{2}+b_{3}=0$
Question 17
Correct
Mark 1.00 out of
1.00
1.00

Any two $n \times n$-nonsingular matrices are row equivalent.
Select one:
a. False

- b. True \checkmark

The correct answer is: True

Question 18
Correct
Mark 1.00 out of
1.00

A square matrix A is nonsingular iff its RREF (reduced row echelon form) is the identity matrix.
Select one:

- a. True \checkmark
b. False

The correct answer is: True

Question 19
Correct
Mark 1.00 out of
1.00

If the row echelon form of $(A \mid b)$ is $\left(\begin{array}{cccc|c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)$ then the general form of the solutions is given by

Select one:
a. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)$
b. b. $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$
c. $x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)$
d. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$

Question 20
 Incorrect
 Mark 0.00 out of
 1.00

If A is a 3×3 matrix with $\operatorname{det}(A)=-1$. Then $\operatorname{det}(\operatorname{adj}(A))=$
Select one:

- a. 3 .
\times
b. 1.
c. -1 .
d. -3 .

The correct answer is: 1 .
Question 21
Correct
Mark 1.00 out of
1.00

If A is a 3×3 matrix such that $\operatorname{det}(A)=2$, then $\operatorname{det}(3 A)=6$

Select one:
a. True

- b. False \checkmark

Question 22
Correct
Mark 1.00 out of
1.00

If A is a 3×5 matrix, then the system $A x=0$

Select one:
a. is inconsistent

- b. has infinitely many solutions
c. has no solution.
d. has only the zero solution

The correct answer is: has infinitely many solutions
Question 23
Correct
Mark 1.00 out of
1.00

Let U be an $n \times n$-matrix in reduced row echelon form and $U \neq I$, then

Select one:
a. $\operatorname{det}(U)=1$
b. The system $U x=0$ has only the zero solution.
c. U is the zero matrix

- d. The system $U x=0$ has infinitely many solutions

The correct answer is: The system $U x=0$ has infinitely many solutions

Question 24
Incorrect
Mark 0.00 out of 1.00

Let A be a 3×3-matrix with $a_{1}=a_{2}$. If $b=a_{2}-a_{3}$, where a_{1}, a_{2}, a_{3} ar the columns of A, then a solution to the system $A x=b$ is

Select one:
a. $x=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$
(-) b . $x=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$
x
c. $x=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$
d. $x=\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$

```
Question 25
Correct
Mark 1.00 out of
1.00
```

If A is an $n \times n$ matrix and the system $A x=b$ has infinitely many solutions, then

Select one:
a. A is nonsingular
b. A has a row of zeros
c. A is symmetric

- d. A singular

The correct answer is: A singular
Question 26
Correct
Mark 1.00 out of
1.00

Let A be a 4×4-matrix such that $A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$, then

Select one:
a. A is the zero matrix
($\mathrm{b} . A$ is singular.
\checkmark
c. The system $A x=0$ has only one solution
d. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$

The correct answer is: A is singular.

```
Question 27
Incorrect
Mark 0.00 out of
1.00
```

If B is a 3×3 nonsingular matrix such that $B^{3}=B$, then one of the following is always true

Select one:
a. $B^{4}=B$.
(-) $\mathrm{b} \cdot \operatorname{det}(B)=1$.
\times
c. $B=0$.
d. $B=B^{-1}$.

The correct answer is: $B=B^{-1}$.
Question 28
Incorrect
Mark 0.00 out of
1.00

If A is a singular $n \times n$-matrix, $b \in \mathbb{R}^{n}$, then the system $A x=b$

Select one:
a. is inconsistent
(b. has a unique solution \boldsymbol{x}
c. has infinitely many solutions.
d. has either no solution or an infinite number of solutions

```
Question }2
Correct
Mark 1.00 out of
1.00
```

Let $A=\left(\begin{array}{llll}1 & 2 & 3 & 0 \\ 1 & 1 & 2 & 1 \\ 2 & 3 & 5 & 1\end{array}\right)$ and $b=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)$. The system $A x=b$
Select one:
a. has exactly three solutions.
b. has a unique solution

- c. is inconsistent \checkmark
d. has infinitely many solutions

The correct answer is: is inconsistent
Question 30
Correct
Mark 1.00 out of
1.00

Let $(1,2,0)^{T}$ and $(2,1,1)^{T}$ be the first two columns of a 3×3 matrix A and $(1,1,1)^{T}$ be a solution of the system $A x=(2,1,-1)^{T}$. Then the third column of the matrix A is

Select one:
a. $(1,2,2)^{T}$.

- b. $(-1,-2,-2)^{T}$.
\checkmark
c. $(4,-1,1)^{T}$.
d. $(1,1,0)^{T}$.

The correct answer is: $(-1,-2,-2)^{T}$.
\leftarrow Announcements
Jump to...

```
Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-1 / General / Short Exam 1
```

```
    Started on Sunday, 11 April 2021, 8:35 AM
        State Finished
Completed on Sunday, 11 April 2021, 9:03 AM
    Time taken 27 mins 45 secs
        Grade 10.00 out of 12.00(83%)
```

Question 1
Correct
Mark 1.00 out of 1.00

If x_{1}, x_{2} are solutions to $A x=b$, then $x_{1}+x_{2}$ is a solution of the system $A x=b$.

Select one:
© a. False
b. True

The correct answer is: False

```
Question 2
```

Correct
Mark 1.00 out of 1.00

Let A be an $n \times n$-matrix in reduced row echelon form and $A \neq I$, then

Select one:a. A is nonsingularb. $\operatorname{det}(A)=1$c. A is the zero matrixd. A is singular

The correct answer is: A is singular

```
Question 3
```

Incorrect
Mark 0.00 out of 1.00

If A is a singular matrix and U is the row echelon form of A, then $\operatorname{det}(U)=$.

Select one:

a. 1
(o b. none of the abovec. ± 1d. 0

The correct answer is: 0

```
Question 4
Correct
Mark 1.00 out of 1.00
```

If x_{1}, x_{2} are solutions to $A x=b$, then $x_{1}-x_{2}$ is a solution of the system $A x=b$.

Select one:

(a. Falseb. True

The correct answer is: False

```
Question 5
Correct
Mark 1.00 out of 1.00
```

$$
\text { If } A B=A C \text {, and }|A| \neq 0 \text {, then }
$$

Select one:

() a. $B=C$.b. $B \neq C$c. $A=C$

The correct answer is: $B=C$.

In the square linear system $A X=b$, if A is singular and b is a linear combination of the columns of A then the system has

Select one:

a. no solutionb. a unique solutionc. infinitely many solutionsd. can not tellThe correct answer is: infinitely many solutions

```
Question }
Correct
Mark 1.00 out of 1.00
```

If B is a 3×3 nonsingular matrix such that $B^{3}=B$, then one of the following is always true

Select one:
a. $B^{4}=B$.b. $B=0$.c. $\operatorname{det}(B)=1$.d. $B=B^{-1}$.

The correct answer is: $B=B^{-1}$.

```
Question }
Correct
Mark 1.00 out of 1.00
```

If A is a nonsingular 3×3-matrix, then the reduced row echelon form of A has no row of zeros.

Select one:
a. False
(ob. True

The correct answer is: True

```
Question }
Incorrect
Mark 0.00 out of 1.00
```

Let $A=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & a & 1 \\ 1 & 1 & 2\end{array}\right)$. the value(s) of a that make A nonsingular
Select one:
(a) a. $a \neq \frac{1}{2}$b. $a=1$c. $a \neq 1$d. $a=\frac{1}{2}$

The correct answer is: $a \neq 1$

```
Question 10
Correct
Mark 1.00 out of 1.00
```

Let A be a 3×4 matrix, and let B be a 4×4 matrix which has a column of zeros, then $A B$ has a column of zeros.

Select one:
a. False
(ob. True

The correct answer is: True

```
Question 11
Correct
Mark 1.00 out of 1.00
```

Let $(1,2,0)^{T}$ and $(2,1,1)^{T}$ be the first two columns of a 3×3 matrix A and $(1,1,1)^{T}$ be a solution of the system $A x=(4,2,5)^{T}$. Then the third column of the matrix A is

Select one:
a. $(1,-1,4)^{T}$.
b. $(4,-1,1)^{T}$.c. $(1,-1,-4)^{T}$.d. $(1,1,4)^{T}$.

The correct answer is: $(1,-1,4)^{T}$.

Question 12
Correct
Mark 1.00 out of 1.00

Let $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & 4 & 3\end{array}\right)$, then $\operatorname{det}(A)=$
Select one:
(o) 7
b. 5
c. 0
d. 9

The correct answer is: 7

4 Quiz 3
Jump to...

```
        Started on Tuesday, 24 November 2020, 3:50 PM
        State Finished
        Completed on Tuesday, 24 November 2020, 4:53 PM
        Time taken 1 hour 2 mins
            Grade 28.00 out of 30.00 (93%)
```

Question 1
Correct
Mark 1.00 out of
1.00

```
An \(n \times n\) matrix \(A\) is invertible if and only if
Select one:
a. \(|A|=0\)
b. \(A x=0\) has a nonzero solution
c. \(A=I\)
- d. there exists a matrix \(B\) such that \(A B=I\)
```

The correct answer is: there exists a matrix B such that $A B=I$

Question 2
Correct
Mark 1.00 out of
1.00
$(0,0,0)^{T}$ is a linear combination of the vectors $(1,2,3)^{T},(1,4,1)^{T},(2,3,1)^{T}$

Select one:

- a. True $\sqrt{ }$
b. False

The correct answer is: True
Question 3
Correct
Mark 1.00 out of
1.00

In the $n \times n$-linear system $A x=b$, if A is singular and b is a linear combination of the columns of A then the system has

Select one:
a. exactly two solutions
b. no solution
c. a unique solution

- d. infinitely many solutions \downarrow

The correct answer is: infinitely many solutions

Question 4	If y, z are solutions to $A x=b$, then $y+z$ is a solution of the system $A x=0$.
Correct	
Mark 1.00 out of	Select one:
1.00	a. True
	(b. False $\sqrt{ }$

The correct answer is: False

Question 5
Incorrect
Mark 0.00 out of
1.00 \qquad

Question 6
Correct
Mark 1.00 out of
1.00 \qquad

Question 7
Correct
Mark 1.00 out of
1.00

Any two $n \times n$-singular matrices are row equivalent.

Select one:
a. False
(b) True x

The correct answer is: False

If A is a 4×3-matrix, $b \in \mathbb{R}^{4}$, and the system $A x=b$ is consistent, then $A x=b$ has a unique solution.

Select one:
a. True
(b. False \checkmark

The correct answer is: False

If $(A \mid b)=\left(\begin{array}{ccc|c}1 & 2 & -1 & 0 \\ 2 & 3 & 1 & -1 \\ 1 & 1 & \alpha & \beta\end{array}\right)$, then the system has only one solution if
Select one:

- a. $\alpha \neq 2$ and β any number
b. $\alpha \neq 2$ and $\beta \neq-1$
c. $\alpha=2$ and $\beta=-1$
d. $\alpha=2$ and $\beta \neq-1$

The correct answer is: $\alpha \neq 2$ and β any number

Question $\mathbf{8}$
Correct
Mark 1.00 out of
1.00

Question 9
Correct
Mark 1.00 out of 1.00

If A is a nonsingular 3×3-matrix, then the reduced row echelon form of A has no row of zeros.
Select one:
a. False

- b. True V

The correct answer is: True

If E is an elementary matrix then one of the following statements is not true

Select one:
a. E^{-1} is an elementary matrix.
b. E is nonsingular.
c. E^{T} is an elementary matrix.

- d. $E+E^{T}$ is an elementary matrix. \checkmark

Question 10
Correct
Mark 1.00 out of
1.00

If A is a 3×3 matrix with $\operatorname{det}(A)=-2$. Then $\operatorname{det}(\operatorname{adj}(A))=$
Select one:

- a. 4.
b. -4 .
c. -8 .
d. 8 .

The correct answer is: 4 .

Question 11
Correct
Mark 1.00 out of
1.00

Question 12
Correct
Mark 1.00 out of
1.00

If A is singular and B is nonsingular $n \times n$-matrices, then $A B$ is

Select one:

- a. singular \vee
b. may or may not be singular
c. nonsingular

The correct answer is: singular

If $(A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 1 & 1 & 2 & 5\end{array}\right)$, then the system $A x=b$ is inconsistent
Select one:

- a. True \checkmark
b. False

The correct answer is: True

Question 13
Correct
Mark 1.00 out of
1.00

If A is a singular $n \times n$-matrix, $b \in \mathbb{R}^{n}$, then the system $A x=b$
Select one:

- a. has either no solution or an infinite number of solutions \downarrow
b. has infinitely many solutions.
- c. has a unique solution
d. is inconsistent

The correct answer is: has either no solution or an infinite number of solutions

Question 14
Correct
Mark 1.00 out of
1.00

If A is symmetric and skew symmetric then $A=0$. (A is skew symmetric if $A=-A^{T}$).

Select one:

- a. True \checkmark
b. False

Question 15
Correct
Mark 1.00 out of
1.00

1.00

If $A=L U$ is the $L U$-factorization of a matrix A, and A is singular, then

Select one:
a. L and U are both singular

- b. U is singular and L is nonsigular
\checkmark
c. L and U are both nonsingular
d. L is singular and U is nonsigular

The correct answer is: U is singular and L is nonsigular

```
Question 16
Correct
Mark 1.00 out of
1.00
1.00
```

\square

Question 17
Correct
Mark 1.00 out of
1.00

Question 18
Correct
Mark 1.00 out of
1.00

If A and B are singular matrices, then $A+B$ is also singular.

Select one:

- a. False \checkmark
b. True

The correct answer is: False

If A is a singular matrix, then A can be written as a product of elementary matrices.

Select one:

- a. False \checkmark
b. True

The correct answer is: False

Let $(1,2,0)^{T}$ and $(2,1,1)^{T}$ be the first two columns of a 3×3 matrix A and $(1,1,1)^{T}$ be a solution of the system $A x=(4,4,5)^{T}$. Then the third column of the matrix A is

Select one:

- a. $(1,1,4)^{T}$.
\checkmark
b. $(4,-1,1)^{T}$.
c. $(-1,-1,-4)^{T}$.
d. $(-1,-2,1)^{T}$.

The correct answer is: $(1,1,4)^{T}$.

Question 19
Correct
Mark 1.00 out of
1.00

Let A be a 3×4 matrix which has a row of zeros, and let B be a 4×4 matrix, then $A B$ has a row of zeros.

Select one:

- a. True \downarrow
b. False

Let A be a 4×4-matrix such that $A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$, then
Select one:
a. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$
b. A is the zero matrix
c. The system $A x=0$ has only one solution

- d. A is singular. \checkmark

The correct answer is: A is singular.

```
Question 21
Correct
Mark 1.00 out of
1.00
```

estion 22
Correct
Mark 1.00 out of
1.00

Let $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & -1 & 3\end{array}\right)$,then $\operatorname{det}(A)=$
Select one:
(-) a. 2
b. 3
c. 5

- d. 0

The correct answer is: 2

```
Question 23
Correct
Mark 1.00 out of
1.00
```

If the row echelon form of $(A \mid b)$ is $\left(\begin{array}{cccc:c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)$ then the general form of the solutions is given by

Select one:
a. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)$
b. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)$
© c. $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$
d. $x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$

Question 24
Correct
Mark 1.00 out of
1.00

If A, B are $n \times n$-skew-symmetric matrices $\left(A\right.$ is skew symmetric if $\left.A^{T}=-A\right)$, then $A B+B A$ is symmetric Select one:

- a. True \vee
b. False

The correct answer is: True

Question 25
Correct
Mark 1.00 out of 1.00

Let A be a 4×3-matrix with $a_{2}-a_{3}=0$. If $b=a_{1}+a_{2}+a_{3}$, where a_{j} is the j th column of A, then the system $A x=b$ will have infinitely many solutions.

Select one:

a. False

- b. True \checkmark

The correct answer is: True
Question 26
Correct
Mark 1.00 out of
1.00

If A is a 3×3-matrix and the system $A x=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)$ has a unique solution, then the system $A x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

Select one:
a. is inconsistent
© b. has only the zero solution. \downarrow
c. has infinitely many solutions

The correct answer is: has only the zero solution.
Question 27
Incorrect
Mark 0.00 out of
1.00
1.00

If $A B=0$, where A and B are $n \times n$ nonzero matrices. Then
Select one:
© a. either A or B is singular \times
b. both A, B are singular.
c. both A, B are nonsingular.
d. either $A=0$ or $B=0$

The correct answer is: both A, B are singular.

Question 28
Correct
Mark 1.00 out of
1.00

1.00

If x_{0} is a solution of the nonhomogeneous system $A x=b$ and x_{1} is a solution of the homogeneous system $A x=0$. Then $x_{1}+x_{0}$ is a solution of

Select one:
a. the system $A x=0$
b. the system $A x=2 b$
c. the system $A x=A b$
(d. the system $A x=b$
\checkmark

The correct answer is: the system $A x=b$

Question 29
Correct
Mark 1.00 out of
1.00

If A is a nonsingular $n \times n$ matrix, $b \in \mathbb{R}^{n}$, then

Select one:
a. The system $A x=b$ is inconsistent
b. The system $A x=b$ has only two solutions
© c. The system $A x=b$ has a unique solution
d. The system $A x=b$ has infinitely many solutions

The correct answer is: The system $A x=b$ has a unique solution

```
Question 30
Correct
Mark 1.00 out of
1.00
The adjoint of the matrix }(\begin{array}{cc}{-1}&{2}\\{1}&{3}\end{array})\mathrm{ is
Select one:
a. \(\left(\begin{array}{cc}-1 & 1 \\ 2 & -3\end{array}\right)\)
b. \(\left(\begin{array}{cc}1 & -2 \\ -1 & -3\end{array}\right)\)
(.) c. \(\left(\begin{array}{cc}3 & -2 \\ -1 & -1\end{array}\right)\)
d. \(\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right)\)
The correct answer is: \(\left(\begin{array}{cc}3 & -2 \\ -1 & -1\end{array}\right)\)
```

Jump to..

Data retention summary.
Switch to the standard theme

```
Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta / General / First exam
```

Started on	Tuesday, 24 November 2020, 3:51 PM
State	Finished
Completed on	Tuesday, 24 November 2020, 4:48 PM
Time taken	57 mins 9 secs
Grade	28.00 out of $30.00(93 \%)$

Question 1
Correct
Mark 1.00 out of
1.00

Let $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & 4 & 3\end{array}\right)$,then $\operatorname{det}(A)=$
Select one:
a. 0
b. 9
c. 5

- d. 7
\checkmark

The correct answer is: 7

Question 2
Correct
Mark 1.00 out of
1.00

If A is a 2×3-matrix, and $b=a_{2}$ (second column of A), then a solution to the system $A x=b$ is

Select one:
a. $x=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$
b. $x=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
с. $x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$

- d. $x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

```
Question 3
Correct
Mark 1.00 out of
1.00
    If }A\mathrm{ is a 2 }\times2\mathrm{ matrix with }\operatorname{det}(A)=-2\mathrm{ . Then }\operatorname{det}(\operatorname{adj}(A))
    Select one:
    a.2.
    (.) b. -2.
    c. -4.
    d. 4.
The correct answer is: -2.
```

```
Question 4
    If }A,B,C\mathrm{ are }n\timesn\mathrm{ nonsingular matrices, then }\mp@subsup{A}{}{2}-\mp@subsup{B}{}{2}=(A+B)(A-B
Correct
Mark 1.00 out of
1.00
Select one:
- a. False v
b. True
```

The correct answer is: False

```
Question 5
If \(A\) is a singular matrix, then \(A\) can be written as a product of elementary matrices.
Correct
Mark 1.00 out of
1.00
- a. False \(\checkmark\)
b. True
```

The correct answer is: False

Mark 1.00 out of
1.00

Select one:
a. $\left(\begin{array}{cc}5 & -1 \\ 2 & 6\end{array}\right)$

- b. $\left(\begin{array}{cc}6 & -2 \\ 1 & 5\end{array}\right)$
c. $\left(\begin{array}{cc}-5 & -1 \\ 2 & -6\end{array}\right)$
d. $\left(\begin{array}{cc}-6 & 2 \\ -1 & -5\end{array}\right)$

The correct answer is: $\left(\begin{array}{cc}6 & -2 \\ 1 & 5\end{array}\right)$

```
Question }
Correct
Mark 1.00 out of
1.00
```

If A and B are $n \times n$ matrices such that $A x \neq B x$ for all nonzero $x \in \mathbb{R}^{n}$. Then
Select one:
a. A and B are singular.
b. $A-B$ is singular.
c. A and B are nonsingular.
© d. $A-B$ is nonsingular.
\checkmark

The correct answer is: $A-B$ is nonsingular.

```
Question 8
Incorrect
Mark 0.00 out of
1.00
-
(b) True \(\mathbf{x}\)
```

The correct answer is: False

Question 9
Correct
Mark 1.00 out of
1.00

Let A be a 4×4-matrix such that $A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$, then
Select one:
a. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$
b. The system $A x=0$ has only one solution
(-) c. A is singular.
d. A is the zero matrix

The correct answer is: A is singular.

Question 10
Correct
Mark 1.00 out of
1.00

If A is symmetric and skew symmetric then $A=0$. (A is skew symmetric if $A=-A^{T}$).
Select one:
a. False
© b. True \checkmark

The correct answer is: True

An $n \times n$ matrix A is invertible if and only if

Select one:

- a. there exists a matrix B such that $A B=I$
b. $A=I$
c. $|A|=0$
d. $A x=0$ has a nonzero solution

The correct answer is: there exists a matrix B such that $A B=I$
Question 12
Correct
Mark 1.00 out of
1.00

Question 13
Correct
Mark 1.00 out of
1.00

If A, B, C are $n \times n$-matrices with A nonsigular and $A B=A C$, then $B=C$
Select one:
a. False

- b. True \checkmark

The correct answer is: True

In the square linear system $A x=b$, if A is singular and b is not a linear combination of the columns of A then the system

Select one:
a. has a unique solution
b. has infinitely many solutions
c. can not tell

- d. has no solution \downarrow

The correct answer is: has no solution

```
Question 14
Correct
Mark 1.00 out of
1.00
```

Any two $n \times n$-singular matrices are row equivalent.

Select one:

- a. False
b. True

The correct answer is: False

Question 15
Correct
Mark 1.00 out of
1.00

If A is a singular $n \times n$-matrix, $b \in \mathbb{R}^{n}$, then the system $A x=b$

Select one:
a. is inconsistent
b. has a unique solution

- c. has either no solution or an infinite number of solutions
d. has infinitely many solutions.

```
Question }1
Correct
Mark 1.00 out of 1.00
```

Let A be a 3×4 matrix which has a row of zeros, and let B be a 4×4 matrix, then $A B$ has a row of zeros.
Select one:

- a. True $\sqrt{ }$
b. False

The correct answer is: True

```
Question 17
Correct
Mark 1.00 out of
1.00
```

If E is an elementary matrix of type III, then E^{T} is

Select one:
a. an elementary matrix of type II
b. an elementary matrix of type I

- c. an elementary matrix of type III \downarrow
d. not an elementary matrix

The correct answer is: an elementary matrix of type III

Question 18
Correct
Mark 1.00 out of 1.00

If the row echelon form of $(A \mid b)$ is $\left(\begin{array}{cccc:c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)$ then the general form of the solutions is given by
Select one:
a. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)$
b. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)$
© c. $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$
d. $x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$

Question 19
Incorrect
Mark 0.00 out of
1.00

If $(A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 0 & 3 & 2 & 1\end{array}\right)$ is the augmented matrix of the system $A x=b$ then the system has no solution

Select one:

- a. False \boldsymbol{x}
b. True

The correct answer is: True
Question 20
Correct
Mark 1.00 out of
1.00

If $(A \mid b)=\left(\begin{array}{ccc|c}1 & 2 & -1 & 0 \\ 2 & 3 & 1 & -1 \\ 1 & 1 & \alpha & \beta\end{array}\right)$, then the system is inconsistent if
Select one:
a. $\alpha \neq 2$ and $\beta \neq-1$
b. $\alpha \neq 2$ and β any number
c. $\alpha=2$ and $\beta=-1$
(0) d. $\alpha=2$ and $\beta \neq-1$

The correct answer is: $\alpha=2$ and $\beta \neq-1$

Question 21
Correct
Mark 1.00 out of
1.00

Let $(1,2,0)^{T}$ and $(2,1,1)^{T}$ be the first two columns of a 3×3 matrix A and $(1,1,1)^{T}$ be a solution of the system $A x=(5,2,4)^{T}$. Then the third column of the matrix A is

Select one:
a. $(-2,1,-3)^{T}$.
b. $(1,-1,-4)^{T}$.
© c. $(2,-1,3)^{T}$.
\checkmark
d. $(1,-1,4)^{T}$.

The correct answer is: $(2,-1,3)^{T}$.

Question 22
Correct
Mark 1.00 out of 1.00

If A is a nonsingular $n \times n$ matrix, then

Select one:

(a. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$.
b. $\operatorname{det}(A)=1$
c. There is a singular matrix C such that $A=C I$.
d. The system $A x=0$ has a nontrivial (nonzero) solution.

The correct answer is: There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$.

```
Question 23
Correct
Mark 1.00 out of
1.00
```

 If \(A\) is a symmetric \(n \times n\)-matrix and \(P\) any \(n \times n\)-matrix, then \(P A P^{T}\) is
 Select one:

- a. symmetric \checkmark
b. not defined
c. singular
d. not symmetric

The correct answer is: symmetric

```
Question 24
Correct
Mark 1.00 out of
1.00
If \(A\) is an \(n \times n\) matrix and the system \(A x=b\) has infinitely many solutions, then
Select one:
a. \(A\) is symmetric
b. \(A\) has a row of zeros
- c. \(A\) singular
d. \(A\) is nonsingular
```

The correct answer is: A singular

```
Question 25
Correct
Mark 1.00 out of
1.00
If }A\mathrm{ is a 3 }\times3\mathrm{ matrix such that }\operatorname{det}(A)=2\mathrm{ , then det (3A)=6
Select one:
    O}\mathrm{ a. False 
    b. True
```

The correct answer is: False

Question 26
Correct
Mark 1.00 out of
1.00

If A, B, C are 3×3-matrices, $\operatorname{det}(A)=9, \operatorname{det}(B)=2, \operatorname{det}(C)=3$, then $\operatorname{det}\left(3 C^{T} B A^{-1}\right)=$ Select one:
a. 6

- b. 18
c. 16
- d. 2

The correct answer is: 18

Question 27
Correct
Mark 1.00 out of 1.00

If A and B are singular matrices, then $A+B$ is also singular.

Select one:

- a. False \downarrow
b. True

Question 28
Correct
Mark 1.00 out of
1.00

In the $n \times n$-linear system $A x=b$, if A is singular and b is a linear combination of the columns of A then the system has

Select one:
a. no solution
b. a unique solution

- c. infinitely many solutions \checkmark
d. exactly two solutions

The correct answer is: infinitely many solutions

Question 29
Correct
Mark 1.00 out of
1.00
:---
a. False
b. True

The correct answer is: False
Question 30
Correct
Mark 1.00 out of
1.00

If A is a 3×3-matrix and the system $A x=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)$ has a unique solution, then the system $A x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
Select one:
a. has infinitely many solutions

- b. has only the zero solution. \downarrow
c. is inconsistent

The correct answer is: has only the zero solution.

Mark 0.00 out of
1.00

If A is a 4×3-matrix, $b \in \mathbb{R}^{\mathbb{4}}$, and the system $A x=b$ is consistent, then $A x=b$ has a unique solution.

Select one:
a. False

- b. True x

The correct answer is: False
" A 'sa singular matix, then the ssitem $A x=b$ has infinte unube of fosutions

Select one:

- a. True \boldsymbol{x}
b. False

Question $\mathbf{4}$
Correct
Mark 1.00 out of
1.00

Question 5
Correct
Mark 1.00 out of
1.00
1.00

Let $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & 1 & 3\end{array}\right)$,then $\operatorname{det}(A)=$
Select one:

- a. 4
b. 0
c. 8
d. 1

The correct answer is: 4
Question 6
Correct
Mark 1.00 out of
1.00

If $(A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 1 & 1 & 2 & 5\end{array}\right)$, then the system $A x=b$ is inconsistent

Select one:

a. False

- b. True \checkmark

The correct answer is: True

Question 7
Incorrect
Mark 0.00 out of
1.00

If a matrix B is obtained from A by multiplying a row of A by a real number c, then $|A|=c|B|$.
Select one:
a. False
© b. True \mathbf{x}

The correct answer is: False
Question 8
Incorrect
Mark 0.00 out of
1.00
1.00

In the square linear system $A x=b$, if A is singular and b is not a linear combination of the columns of A then the system

Select one:
a. can not tell
b. has a unique solution

- c. has infinitely many solutions \boldsymbol{x}
d. has no solution

The correct answer is: has no solution
Question 9
Correct
Mark 1.00 out of
1.00

If E is an elementary matrix of type III, then E^{T} is

Select one:
a. not an elementary matrix
© b. an elementary matrix of type III \checkmark
c. an elementary matrix of type I
d. an elementary matrix of type II

The correct answer is: an elementary matrix of type III
Question 10
Correct
Mark 1.00 out of
1.00

If $A B=0$, where A and B are $n \times n$ nonzero matrices. Then

Select one:
a. both A, B are nonsingular.

- b. both A, B are singular.
c. either A or B is singular
d. either $A=0$ or $B=0$

The correct answer is: both A, B are singular.
Question 11
Correct
Mark 1.00 out of
1.00

If A, B are $n \times n$-skew-symmetric matrices $\left(A\right.$ is skew symmetric if $A^{T}=-A$), then $A B+B A$ is symmetric Select one:
a. False

- b. True \checkmark

The correct answer is: True

Question 12
Correct
Mark 1.00 out of
1.00

If A is a 3×3 matrix such that $\operatorname{det}(A)=2$, then $\operatorname{det}(3 A)=6$

Select one:
a. True

- b. False \checkmark

Question 13
Correct
Mark 1.00 out of
1.00

The adjoint of the matrix $\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)$ is

Select one:
a. $\left(\begin{array}{cc}-5 & 3 \\ 2 & -1\end{array}\right)$
b. $\left(\begin{array}{cc}-3 & 5 \\ 1 & -2\end{array}\right)$
c. $\left(\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right)$
d. $\left(\begin{array}{cc}-2 & 1 \\ 5 & -3\end{array}\right)$

The correct answer is: $\left(\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right)$

Question 14
Correct
Mark 1.00 out of
1.00

Let $(1,2,0)^{T}$ and $(2,1,1)^{T}$ be the first two columns of a 3×3 matrix A and $(1,1,1)^{T}$ be a solution of the system $A x=(2,1,3)^{T}$. Then the third column of the matrix A is

Select one:

a. $(1,1,0)^{T}$.

- b. $(-1,-2,2)^{T}$.
c. $(4,-1,1)^{T}$.
d. $(-1,-1,2)^{T}$.

The correct answer is: $(-1,-2,2)^{T}$.

Question 15
Correct
Mark 1.00 out of
1.00
$(0,0,0)^{T}$ is a linear combination of the vectors $(1,2,3)^{T},(1,4,1)^{T},(2,3,1)^{T}$
Select one:

- a. True \checkmark
b. False

The correct answer is: True
Question 16
Correct
Mark 1.00 out of
1.00

Let A be a 4×4-matrix such that $A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$, then
Select one:
a. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$
(-) b. A is singular.
c. A is the zero matrix
d. The system $A x=0$ has only one solution

Question 17
Incorrect
Mark 0.00 out of
1.00
\qquad

Question 18
Incorrect
Mark 0.00 out of
1.00

If A is a 4×3 matrix such that $A x=0$ has only the zero solution, and $b=\left(\begin{array}{l}1 \\ 3 \\ 2 \\ 0\end{array}\right)$, then the system $A x=b$

Select one:
a. is either inconsistent or has an infinite number of solutions
b. is inconsistent
c. is either inconsistent or has one solution

- d. has exactly one solution \mathbf{x}

The correct answer is: is either inconsistent or has one solution
Question 19
Correct
Mark 1.00 out of
1.00
1.00

If x_{0} is a solution of the nonho
Then $x_{1}+x_{0}$ is a solution of
Select one:
a. the system $A x=0$
b. the system $A x=2 b$
c. the system $A x=A b$
d. the system $A x=b$
a

The correct answer is: the system $A x=b$

Question 20
Correct
Mark 1.00 out of
1.00

If A, B are two square nonzero matrices and $A B=0$ then both A and B are singular

Select one:
a. False
(b. True V

```
Question 21
Incorrect
Mark 0.00 out of
1.00
```

Question 22
Correct
Mark 1.00 out of
1.00
Question 23
Correct
Mark 1.00 out of
1.00

If A is a nonsingular $n \times n$ matrix, $b \in \mathbb{R}^{n}$, then Select one:
a. The system $A x=b$ is inconsistent
b. The system $A x=b$ has infinitely many solutions
c. The system $A x=b$ has only two solutions

- d. The system $A x=b$ has a unique solution
correct answer is: The system $A x=b$ has a unique solution

Question 24
Correct
Mark 1.00 out of
1.00

If A, B are $n \times n$ symmetric matrices then $A B$ is symmetric.

Select one:

- a. False V
b. True

The correct answer is: False
Question 25
Correct
Mark 1.00 out of
1.00
1.00

If A is a 2×3-matrix, and $b=a_{2}$ (second column of A), then a solution to the system $A x=b$ is

Select one:
a. $x=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$
b. $x=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$

- c. $x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
d. $x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

```
Question 26
Incorrect
Mark 0.00 out of
1.00
```

If A and B are $n \times n$ matrices such that $A x \neq B x$ for all nonzero $x \in \mathbb{R}^{n}$. Then

Select one:
a. $A-B$ is nonsingular.

- b. A and B are nonsingular. \mathbf{x}
c. $A-B$ is singular.
d. A and B are singular.

The correct answer is: $A-B$ is nonsingular.

Question 27
Correct
Mark 1.00 out of
1.00

If A is a nonsingular $n \times n$ matrix, then

Select one:

- a. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$.
b. There is a singular matrix C such that $A=C I$.
c. The system $A x=0$ has a nontrivial (nonzero) solution.
d. $\operatorname{det}(A)=1$

The correct answer is: There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$.

```
Question 28
Correct
Mark 1.00 out of
1.00
```

Any elementary matrix is nonsigular
Select one:
a. False
- b. True \checkmark
The correct answer is: True
Question 29
Correct
Mark 1.00 out of
1.00

If A is singular and B is nonsingular $n \times n$-matrices, then $A B$ is Select one:

- a. singular \downarrow
b. may or may not be singular
c. nonsingular

The correct answer is: singular
Question 30
Correct
Mark 1.00 out of
1.00

In the $n \times n$-linear system $A x=b$, if A is singular and b is a linear combination of the columns of A then the system has

Select one:
a. exactly two solutions
b. no solution
c. a unique solution

- d. infinitely many solutions \checkmark

The correct answer is: infinitely many solutions
\leftarrow Announcements
Jump to...

```
        Started on Tuesday, 24 November 2020, 4:00 PM
        State Finished
    Completed on Tuesday, 24 November 2020, 5:07 PM
        Time taken 1 hour 7 mins
            Grade 24.00 out of 30.00 (80%)
```

Question 1
Correct
Mark 1.00 out of
1.00

```
f \(A, B, C\) are \(3 \times 3\)-matrices, \(\operatorname{det}(A)=9, \operatorname{det}(B)=2, \operatorname{det}(C)=3\), then \(\operatorname{det}\left(3 C^{T} B A^{-1}\right)=\)
Select one:
a. 6
b. 16
(-) c. 18
d. 2
```

The correct answer is: 18

Question 2
Correct
Mark 1.00 out of
1.00

Let $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & -2 & 3\end{array}\right)$, then $\operatorname{det}(A)=$
Select one:

- a. 1
\checkmark
b. 9
c. 7
d. 0

The correct answer is: 1

Question 3
Correct
Mark 1.00 out of
1.00

The adjoint of the matrix $\left(\begin{array}{cc}4 & 1 \\ 2 & -1\end{array}\right)$ is
Select one:
(-)..$\left(\begin{array}{cc}-1 & -1 \\ -2 & 4\end{array}\right)$
b. $\left(\begin{array}{ll}-1 & -2 \\ -3 & -5\end{array}\right)$
c. $\left(\begin{array}{cc}4 & -1 \\ -2 & -1\end{array}\right)$
d. $\left(\begin{array}{cc}-1 & 2 \\ 1 & -4\end{array}\right)$
Question 4
Correct
Mark 1.00 out of
1.00

If $A=\left(\begin{array}{ccc}1 & 4 & -1 \\ 2 & 9 & 2 \\ -3 & -12 & 3\end{array}\right)$ then the lower triangular matrix L in the $L U$-facrorization of A is given by

Select one:

- a. $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1\end{array}\right)$
b. $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 0\end{array}\right)$
c. $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1\end{array}\right)$
d. $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 0\end{array}\right)$

The correct answer is: $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1\end{array}\right)$

Question 5
 Correct
 Mark 1.00 out of
 1.00

Correct
Mark 1.00 out of
1.00

Any two $n \times n$-singular matrices are row equivalent.

Select one:
a. True
© b. False \checkmark

The correct answer is: False

If A is a nonsingular and symmetric matrix, then
Select one:
a. A^{-1} is singular and symmetric
b. A^{-1} is singular and not symmetric

- c. A^{-1} is nonsingular and symmetric
d. A^{-1} is nonsingular and not symmetric

The correct answer is: A^{-1} is nonsingular and symmetric

```
Question 7
Correct
Mark 1.00 out of
1.00
```

Question 8
Incorrect
Mark 0.00 out of
1.00

$$
00
$$

Correct
Mark 1.00 out of
1.00

Question 10
Correct
Mark 1.00 out of
1.00

Let $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & a & 1 \\ 1 & 1 & 2\end{array}\right)$. the value(s) of a that make A nonsingular
Select one:
a. $a \neq \frac{1}{2}$
b. $a=1$
c. $a=\frac{1}{2}$
(- d. $a \neq 1$
\checkmark

The correct answer is: $a \neq 1$

Mark 0.00 out of 1.00

If A, B are $n \times n$-skew-symmetric matrices $\left(A\right.$ is skew symmetric if $\left.A^{T}=-A\right)$, then $A B+B A$ is symmetric

Select one:
a. True
(b. False \boldsymbol{x}

Question 12
Correct
Mark 1.00 out of
1.00

If A is a singular matrix, then A^{T} is also singular.

Select one:

- a. True \checkmark
b. False

The correct answer is: True

Question 13
Correct
Mark 1.00 out of
1.00

Question 14
Correct
Mark 1.00 out of
1.00

If A is a 4×4-matrix and $x=\left(\begin{array}{l}2 \\ 3 \\ 0 \\ 1\end{array}\right)$ is a solution to the system $A x=0$, then A is singular.
Select one:
a. False

- b. True \checkmark

The correct answer is: True

Question 15
Correct
Mark 1.00 out of 1.00

If A and B are $n \times n$ matrices such that $A x \neq B x$ for all nonzero $x \in \mathbb{R}^{n}$. Then
Select one:
a. $A-B$ is singular.

If A is a 4×3-matrix, $b \in \mathbb{R}^{4}$, and the system $A x=b$ is consistent, then $A x=b$ has a unique solution.

Select one:
a. True

- b. False \checkmark

The correct answer is: False
b. A and B are nonsingular.

- c. $A-B$ is nonsingular.
d. A and B are singular.

The correct answer is: $A-B$ is nonsingular.

Question 16
Correct
Mark 1.00 out of
1.00

If $A=\left(\begin{array}{ccc}1 & -2 & 5 \\ 4 & -11 & 8 \\ -3 & 3 & -27\end{array}\right)$ and $b=\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$, then the system $A x=b$ is consistent if and only if
Select one:
a. $7 b_{1}-b_{2}+b_{3} \neq 1$
b. $7 b_{1}-b_{2}+b_{3} \neq 0$
c. $7 b_{1}-b_{2}+b_{3}=1$
(-). $7 b_{1}-b_{2}+b_{3}=0$

The correct answer is: $7 b_{1}-b_{2}+b_{3}=0$
Question 17
Correct
Mark 1.00 out of
1.00
1.00

Any two $n \times n$-nonsingular matrices are row equivalent.
Select one:
a. False

- b. True \checkmark

The correct answer is: True

Question 18
Correct
Mark 1.00 out of
1.00

A square matrix A is nonsingular iff its RREF (reduced row echelon form) is the identity matrix.
Select one:

- a. True \checkmark
b. False

The correct answer is: True

Question 19
Correct
Mark 1.00 out of
1.00

If the row echelon form of $(A \mid b)$ is $\left(\begin{array}{cccc|c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)$ then the general form of the solutions is given by

Select one:
a. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)$
b. b. $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$
c. $x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)$
d. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$

Question 20
 Incorrect
 Mark 0.00 out of
 1.00

If A is a 3×3 matrix with $\operatorname{det}(A)=-1$. Then $\operatorname{det}(\operatorname{adj}(A))=$
Select one:

- a. 3 .
\times
b. 1.
c. -1 .
d. -3 .

The correct answer is: 1 .
Question 21
Correct
Mark 1.00 out of
1.00

If A is a 3×3 matrix such that $\operatorname{det}(A)=2$, then $\operatorname{det}(3 A)=6$

Select one:
a. True

- b. False \checkmark

Question 22
Correct
Mark 1.00 out of
1.00

If A is a 3×5 matrix, then the system $A x=0$

Select one:
a. is inconsistent

- b. has infinitely many solutions
c. has no solution.
d. has only the zero solution

The correct answer is: has infinitely many solutions
Question 23
Correct
Mark 1.00 out of
1.00

Let U be an $n \times n$-matrix in reduced row echelon form and $U \neq I$, then

Select one:
a. $\operatorname{det}(U)=1$
b. The system $U x=0$ has only the zero solution.
c. U is the zero matrix

- d. The system $U x=0$ has infinitely many solutions

The correct answer is: The system $U x=0$ has infinitely many solutions

Question 24
Incorrect
Mark 0.00 out of 1.00

Let A be a 3×3-matrix with $a_{1}=a_{2}$. If $b=a_{2}-a_{3}$, where a_{1}, a_{2}, a_{3} ar the columns of A, then a solution to the system $A x=b$ is

Select one:
a. $x=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$
(-) b . $x=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$
x
c. $x=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$
d. $x=\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$

```
Question 25
Correct
Mark 1.00 out of
1.00
```

If A is an $n \times n$ matrix and the system $A x=b$ has infinitely many solutions, then

Select one:
a. A is nonsingular
b. A has a row of zeros
c. A is symmetric

- d. A singular

The correct answer is: A singular
Question 26
Correct
Mark 1.00 out of
1.00

Let A be a 4×4-matrix such that $A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$, then

Select one:
a. A is the zero matrix
($\mathrm{b} . A$ is singular.
\checkmark
c. The system $A x=0$ has only one solution
d. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$

The correct answer is: A is singular.

```
Question 27
Incorrect
Mark 0.00 out of
1.00
```

If B is a 3×3 nonsingular matrix such that $B^{3}=B$, then one of the following is always true

Select one:
a. $B^{4}=B$.
(-) $\mathrm{b} \cdot \operatorname{det}(B)=1$.
\times
c. $B=0$.
d. $B=B^{-1}$.

The correct answer is: $B=B^{-1}$.
Question 28
Incorrect
Mark 0.00 out of
1.00

If A is a singular $n \times n$-matrix, $b \in \mathbb{R}^{n}$, then the system $A x=b$

Select one:
a. is inconsistent
(b. has a unique solution \boldsymbol{x}
c. has infinitely many solutions.
d. has either no solution or an infinite number of solutions

```
Question }2
Correct
Mark 1.00 out of
1.00
```

Let $A=\left(\begin{array}{llll}1 & 2 & 3 & 0 \\ 1 & 1 & 2 & 1 \\ 2 & 3 & 5 & 1\end{array}\right)$ and $b=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)$. The system $A x=b$
Select one:
a. has exactly three solutions.
b. has a unique solution

- c. is inconsistent \checkmark
d. has infinitely many solutions

The correct answer is: is inconsistent
Question 30
Correct
Mark 1.00 out of
1.00

Let $(1,2,0)^{T}$ and $(2,1,1)^{T}$ be the first two columns of a 3×3 matrix A and $(1,1,1)^{T}$ be a solution of the system $A x=(2,1,-1)^{T}$. Then the third column of the matrix A is

Select one:
a. $(1,2,2)^{T}$.

- b. $(-1,-2,-2)^{T}$.
\checkmark
c. $(4,-1,1)^{T}$.
d. $(1,1,0)^{T}$.

The correct answer is: $(-1,-2,-2)^{T}$.
\leftarrow Announcements
Jump to...

```
    Started on Monday, 19 October 2020, 10:01 AM
        State Finished
    Completed on Monday, 19 October 2020, 10:31 AM
    Time taken 30 mins 1 sec
        Marks 23.00/25.00
        Grade 9.20 out of 10.00 (92%)
```


Question 1

Correct
Mark 2.00 out of 2.00

If a matrix A is row equivalent to I, then A is nonsingular.
Select one:

- a. True \checkmark
b. False

Question 2

Correct
Mark 2.00 out
of 2.00
If a matrix A is nonsingular, then the matrix A^{T} is also nonsingular.
Select one:

- a. True \downarrow
b. False

Question 3
Correct
Mark 2.00 out
of 2.00

If A and B are $n \times n$ nonsingular matrices, then $A B$ is also nonsingular.
Select one:

- a. True \checkmark
b. False

Question 4
If $A x=b$ is an overdetermined and consistent linear system, then it must have infinitely many solutions.
Correct
Mark 2.00 out
Select one:
of 2.00
a. True
© b. False

Question 5
Correct
Mark 2.00 out of 2.00

Let A be a 3×3 matrix and suppose that $A\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. Then
Select one:
© a. $A x=0<$ has infinitely many solutions
b. $A x=(1,0,0)^{T}$ has infinitely many solutions
o. c. A is nonsingular
d. None of the above

Question 6

If a matrix is in row echelon form, then it is also in reduced row echelon form.
Correct
Mark 2.00 out
Select one:

Question 7
Correct
Mark 3.00 out of 3.00

If $(A \mid b)=\left[\begin{array}{ccc|c}1 & 0 & 2 & 1 \\ -1 & 1 & -1 & 0 \\ -1 & 0 & \alpha & \beta\end{array}\right]$ is the augmented matrix of the system $A x=b$. Answer the following questions.
The system has no solution if
$\bigcirc \alpha=-2$ and $\beta \neq-1 \vee$
$\bigcirc \alpha=-2$ and $\beta=-1$
$\alpha \neq-2$ and $\beta \neq-1$
$\alpha \neq-2$ and $\beta=-1$
The system has exactly one solution if
$\bigcirc \alpha=-2$ and $\beta=-1$
○ $\alpha \neq-2$
$\bigcirc \alpha=-2$
$\alpha \neq-2$ and $\beta \neq-1$
The system has infinitely many solutions if
$\alpha \neq-2$ and $\beta \neq-1$
$\bigcirc \alpha=-2$ and $\beta \neq-1$
$\bigcirc \alpha=-2$ and $\beta=-1$
$\alpha \neq-2$ and $\beta=-1$

Question 8

Correct
Mark 2.00 out of 2.00

Let $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 1 & 0 \\ 1 & 8 & 1\end{array}\right]$. If we want to find the $L U$ factorization of A, then $L=$

Select one:
a. $\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 2 & 1\end{array}\right]$
b. $\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 8 & 1\end{array}\right]$
c. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -2 & 1\end{array}\right]$
d. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -8 & 1\end{array}\right]$

Question 9 Incorrect Mark 0.00 out of 2.00

A homogeneous system can have a nontrivial solution.

Select one:
a. True
(b. False \boldsymbol{x}

Question 10 The inverse of an elementary matrix is also an elementary matrix.
Correct
Mark 2.00 out of 2.00

Select one:
© a. Trueb. False

Question 11

 If a system of linear equations is undetermined, then it must have infinitely many solutions.Correct
Mark 2.00 out Select one:
of 2.00

- a. True
© b. False

Question 12 The sum of two $n \times n$ nonsingular matrices is also nonsingular.
Correct
Mark 2.00 out
Select one:

- a. True
© b. False \downarrow

Started on Monday, 19 October 2020, 5:39 PM
State Finished
Completed on Monday, 19 October 2020, 5:57 PM
Time taken 18 mins 13 secs
Grade 10 out of 10 (100\%)

Question 1

Correct
Mark 1 out of 1
If $A B=0$, where A and B are $n \times n$ matrices. Then

Select one:
(a. either A or B is singular
b. either $A=0$ or $B=0$
c. both A, B are singular.
d. both A, B are nonsingular.

The correct answer is: either A or B is singular

If A, B, C are $n \times n$-matrices with $A B=A C$, then $B=C$
Correct
Mark 1 out of 1
Select one:
(a. False
b. True

The correct answer is: False

Question 3

The sum of two elementary matrices is elementary
Correct
Mark 1 out of 1
Select one:
O a. False
b. True

The correct answer is: False

Question 4

If A, B are $n \times n$-symmetric matrices, then $A B-B A$ is skew symmetric
Correct
Mark 1 out of 1
a. False
© b. True

Question 5

Correct Mark 1 out of 1

In the square linear system $A x=b$, if A is singular and b is a linear combination of the columns of A then the system has

Select one:
a. no solution
© b. infinitely many solutions

- c. a unique solution
od. can not tell

The correct answer is: infinitely many solutions

Question 6
Correct Mark 1 out of 1

Question 7
Correct
Mark 1 out of 1
If A is a 3×3-matrix and the system $A x=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)$ has a unique solution, then the system $A x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

Select one:

a. has infinitely many solutionsb. none of the abovec. is inconsistentd. has only the zero solution.

The correct answer is: has only the zero solution.

If $(A \mid b)=\left(\begin{array}{cccc:c}1 & 2 & 1 & -1 & 0 \\ 2 & 3 & 1 & 1 & -1 \\ 0 & 1 & 1 & \alpha & \beta\end{array}\right)$, then the system is inconsistent if

Select one:
a. $\alpha=-3$ and $\beta=1$b. $\alpha \neq-3$ and $\beta \neq 1$c. $\alpha=-3$ and $\beta \neq 1$d. $\alpha \neq-3$ and β any number

The correct answer is: $\alpha=-3$ and $\beta \neq 1$

Question 8
Correct Mark 1 out of 1

If y, z are solutions to $A x=b$, then $y-z$ is a solution of the system $A x=0$.
Select one:
© a. Trueb. False

The correct answer is: True

Question 9
If A is a 3×4-matrix, and $b=a_{2}$ (second column of A), then a solution to the system $A x=b$ is Correct Mark 1 out of 1

Select one:

- a. $x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$
b. $x=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
c. $x=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$
d. $x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$

Question 10 If B is a 3×3 matrix such that $B^{2}=B$. One of the following is always true
Correct
Mark 1 out of 1
Select one:
(c) a. $B^{5}=B$.
b. b. $B=0$.
c. $B=I$.
d. B is nonsingular.

The correct answer is: $B^{5}=B$.

```
Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta / General / Second Exam
```

```
        Started on Sunday, 10 January 2021, 9:57 AM
        State Finished
    Completed on Sunday, }10\mathrm{ January 2021, 10:58 AM
        Time taken 1 hour 1 min
            Grade 29.00 out of 32.00 (91%)
```

Question 1
Incorrect
Mark 0.00 out of
1.00

```
Every spanning set for \(\mathbb{R}^{3}\) contains at least 3 vectors.
Select one:
- a. False \(\boldsymbol{x}\)
b. True
Question 2
Correct
Mark 1.00 out of
1.00
Let \(S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x=\frac{1}{y}\right\}\), then \(S\) is a subspace of \(\mathbb{R}^{2}\).
Select one:
a. True
- b. False \(V\)
The correct answer is: False
```

Question 3 Correct	Let $E=[2+x, 3-x], F=[1$,
Mark 1.00 out of	Select one:
1.00	a. $\left(\begin{array}{cc}2 & 3 \\ 1 & -1\end{array}\right)$
	b. $\left(\begin{array}{cc}2 & 1 \\ 3 & -1\end{array}\right)$
	c. $\left(\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right)$
	d. $\left(\begin{array}{cc}1 & -1 \\ 3 & 2\end{array}\right)$
	The correct answer is: $\left(\begin{array}{cc}2 & 3 \\ 1 & -1\end{array}\right)$

Question 4
Correct
Mark 1.00 out of
1.00

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $[p(x)]_{E}=\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)$, then

Select one:
a. $p(x)=3 x^{2}+x-3$
(b. $p(x)=3 x^{2}+2 x+4$
c. $p(x)=x^{2}-x+3$
d. $p(x)=3 x^{2}+2 x+5$

The correct answer is: $p(x)=3 x^{2}+2 x+4$

Question 5
Correct
Mark 1.00 out of
1.00 \qquad

Question 6
Correct
Mark 1.00 out of 1.00

If A is a 3×3-matrix, and $A x=0$ has only the zero solution, then nullity $(A)=$
Select one:
a. 1
b. 2
(-) c. 0
d. 3

The correct answer is: 0

Let $S=\left\{\left(\begin{array}{c}a+b+2 c \\ a+2 c \\ a+b+2 c\end{array}\right): a, b \in \mathbb{R}\right\}$. Then dimension of S equals

Select one:

a. 0
b. 1
c. 3

- d. 2

The correct answer is: 2

Question 7
Incorrect
Mark 0.00 out of 1.00

Which of the following is not a basis for the corresponding space

Select one:
a. $\left\{(1,1)^{T},(2,-3)^{T}\right\} ; \mathbb{R}^{2}$
b. $\{5-x, x-1\} ; P_{2}$
© c. $\left\{x+4,1-x^{2}, x^{2}+x+3\right\} ; P_{3}$
\times
d. $\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}$

The correct answer is: $\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}$

Question 8
Correct
Mark 1.00 out of
1.00 \qquad

Correct
Mark 1.00 out of
1.00 \qquad
The vectors $\left\{x^{2}+2 x+1, x-1, x^{2}+x+1\right\}$ form a basis for P_{3}.
Select one:

- a. True \checkmark
b. False

The correct answer is: True
Question 10
Correct
Mark 1.00 out of
1.00

If A is an $n \times n$-matrix and for each $b \in \mathbb{R}^{n}$ the system $A x=b$ has a unique solution, then
Select one:

- a. A is nonsingular
b. $\operatorname{nullity}(A)=1$
c. $\operatorname{rank}(A)=n-1$
d. A is singular

The correct answer is: A is nonsingular

Question 11
Correct
Mark 1.00 out of
1.00

If V is a vector space of dimension n, then any subset from V that has less than n vectors is not a spanning set for V.
Select one:

- a. True \checkmark
b. False

The correct answer is: True

The coordinate vector of $\left(\begin{array}{l}-3 \\ -2 \\ -5\end{array}\right)$ with respect to the ordered basis $\left[\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)\right]$ is

Select one:
a. $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$
() b. $\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)$
c. $\left(\begin{array}{c}1 \\ -4 \\ 3\end{array}\right)$
d. $\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)$

The correct answer is: $\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)$
Question 12
Correct
Mark 1.00 out of
1.00
1.00

If A is a 3×5-matrix, rows of A are linearly independent, then
Select one:
a. $\operatorname{rank}(A)=\operatorname{nullity}(A)+2$
b. $\operatorname{rank}(A)=\operatorname{nullity}(A)$

- c. $\operatorname{rank}(A)=\operatorname{nullity}(A)+1$
d. $\operatorname{rank}(A)=\operatorname{nullity}(A)+3$

The correct answer is: $\operatorname{rank}(A)=\operatorname{nullity}(A)+1$

Question 13
Correct
Mark 1.00 out of
1.00

If A is a 4×6 matrix, then nullity of $A \geq 2$.
Select one:

- a. True \checkmark
b. False

The correct answer is: True

Question 14
Correct
Mark 1.00 out of
1.00 \square

If A is a 3×3-matrix, and $A x=0$ has only the zero solution, then $\operatorname{rank}(A)=$
Select one:

- a. 3
b. 1
c. 2
d. 0

The correct answer is: 3

```
Let }V\mathrm{ be a vector space of dimension 4 and W={v, ,v2, v},\mp@subsup{v}{4}{},\mp@subsup{v}{4}{}}\mathrm{ a set of nonzero vectors of }V\mathrm{ , then
Select one:
    a. W is a basis
    b.}W\mathrm{ is a spanning set
    c. W is linearly independent
- d. W is linearly dependent
```

The correct answer is: W is linearly dependent
Question 16
Incorrect
Mark 0.00 out of
1.00

Let $S=\{f \in C[-1,1]: f(-1)=f(1)\}$, then S is a subspace of $C[-1,1]$.
Select one:
a. True

- b. False \boldsymbol{x}
Question 17
Correct
Mark 1.00 out of
1.00

If A is an $m \times n$-matrix, $m \neq n$, then either the rows or the columns of A are linearly independent

Select one:

- a. False \checkmark
b. True

The correct answer is: False

Question 18
Correct
Mark 1.00 out of
1.00

If $f_{1}, f_{2}, \cdots, f_{n} \in C^{n-1}[a, b]$ and $W\left[f_{1}, f_{2}, \cdots, f_{n}\right]\left(x_{0}\right) \neq 0$ for some $x_{0} \in[a, b]$, then $f_{1}, f_{2}, \cdots, f_{n}$ are Select one:
© a. linearly independent. \downarrow
b. linearly dependent
c. form a spanning set for $C^{n-1}[a, b]$

The correct answer is: linearly independent.

Question 19
Correct
Mark 1.00 out of 1.00

Question 20
Correct
Mark 1.00 out of 1.00
let A be a 4×7-matrix, if the row echelon form of A has 2 nonzero rows, then dim (column space of A) is

Select one:
a. 3
b. 5

- c. $2 \checkmark$
d. 7

The correct answer is: 2

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $p(x)=-3 x^{2}+x+5$, then the coordinate vector of $p(x)$ with respect to E is

Select one:
a. $\left(\begin{array}{c}2 \\ -3 \\ 3\end{array}\right)$
(c) b. $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$
c. $\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right)$
d. $\left(\begin{array}{c}3 \\ -3 \\ 2\end{array}\right)$

The correct answer is: $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$

Question 21
Correct
Mark 1.00 out of
1.00
\qquad

The functions $\sin x, \cos x, \sin (2 x)$ in $C^{2}[0,2 \pi]$ are
Select one:
a. linearly dependent
© b. linearly independent \checkmark

The correct answer is: linearly independent

Question 22
Correct
Mark 1.00 out of
1.00 \square
Select one:

- a. False
b. True

The correct answer is: False

Question 23
Correct
Mark 1.00 out of
1.00

The transition matrix from the standard basis $S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]$ to the ordered basis $U=\left[u_{1}=\binom{1}{2}, u_{2}=\binom{3}{7}\right]$ is

Select one:
a. $T=\left(\begin{array}{cc}1 & -3 \\ -2 & 7\end{array}\right)$
b. $T=\left(\begin{array}{cc}-7 & 3 \\ 2 & -1\end{array}\right)$
© с. $T=\left(\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right)$
d. $T=\left(\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right)$

The correct answer is: $T=\left(\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right)$

Question 24
Correct
Mark 1.00 out of
1.00

Let V be a vector space, $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ a spanning set for V, and $v \in V$, then the vectors $\left\{v_{1}, v_{2}, \ldots v_{n}, v\right\}$ form a spanning set for V.

Select one:
a. False
© b. True \downarrow

Question 25
Correct
Mark 1.00 out of
1.00

The nullity of $A=\left(\begin{array}{ccccc}1 & 4 & 1 & 2 & 1 \\ 2 & 6 & -1 & 2 & -1 \\ 2 & 10 & 0 & 4 & 0\end{array}\right)$ is
Select one:
a. 3
b. 0
c. 1

- d. 2

The correct answer is: 2

```
Question 26
Correct
Mark 1.00 out of 1.00
```

The vectors $\left\{(1,-1,1)^{T},(1,-1,2)^{T},(1,-1,2)^{T}\right\}$ form a basis for \mathbb{R}^{3}.

Select one:

- a. False \checkmark
b. True

The correct answer is: False
Question 27
Correct
Mark 1.00 out of
1.00
1.00

The coordinate vector of $8+6 x$ with respect to the basis $[2 x, 2]$ is $(4,3)^{T}$

Select one:

- a. False \checkmark
b. True

The correct answer is: False
Question $\mathbf{2 8}$
Correct
Mark 1.00 out of
1.00

Let A be a 5×4 matrix, and $\operatorname{rank}(A)=4$
Select one:
a. A has a row of zeros

- b. The columns of A are linearly independent
c. $\operatorname{nullity}(A)=1$
d. The rows of A are linearly independent

The correct answer is: The columns of A are linearly independent

```
Question }2
Correct
Mark 1.00 out of
1.00
```

Let A be a 4×3 matrix, and $\operatorname{nullity}(A)=0$, then

Select one:
a. The rows of A are linearly independent

- b. The columns of A are linearly independent
c. $\operatorname{rank}(A)=1$
d. the columns of A form a basis for \mathbb{R}^{4}

The correct answer is: The columns of A are linearly independent

```
Question 30
Correct
Mark 1.00 out of
1.00
```

Question $\mathbf{3 0}$
Correct
Mark 1.00 out of
1.00

Question 31
Correct
Mark 1.00 out of
1.00
dimension of the subspace $S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{cc}1 & 2 \\ 1 & 0\end{array}\right), A_{2}\left(\begin{array}{cc}0 & -1 \\ 1 & 3\end{array}\right), A_{3}=\left(\begin{array}{cc}-3 & -8 \\ -1 & 6\end{array}\right)\right\}$ is

Select one:
a. 1
(b. b. 2

c. 0
d. 3

The correct answer is: 2

If the columns of $A_{n \times n}$ are linearly independent and $b \in \mathbb{R}^{n}$, then the system $A x=b$ is inconsistent.

Select one:

- a. False \vee
b. True

The correct answer is: False

Question 32
Correct
Mark 1.00 out of
1.00

If $v_{1}, v_{2}, \cdots, v_{k}$ are vectors in a vector space V, and $\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k}\right)=\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k-1}\right)$, then v_{k} can be written as alinear combination of $v_{1}, v_{2}, \cdots, v_{k-1}$

Select one:

- a. True
b. False

The correct answer is: True

```
Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta / General / Second Exam
```

```
        Started on Sunday, }10\mathrm{ January 2021, 9:55 AM
        State Finished
    Completed on Sunday, }10\mathrm{ January 2021, 11:10 AM
        Time taken 1 hour 15 mins
            Grade 23.00 out of 32.00 (72%)
```

Question 1
Correct
Mark 1.00 out of
1.00

Let V be a vector space, $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ a spanning set for V, and $v \in V$, then the vectors $\left\{v_{1}, v_{2}, \ldots v_{n}, v\right\}$ form a spanning set for V.

Select one:
a. False

- b. True $\sqrt{ }$

Question 2
Correct
Mark 1.00 out of
1.00

If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ forms a spanning set for a vector space $V, \operatorname{dim}(V)=3, v_{4}$ can be written as a linear combination of v_{1}, v_{2}, v_{3}, then

Select one:
a. $\left\{v_{1}, v_{2}, v_{3}\right\}$ do not form a spanning set for V

- b. $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for V
c. $\left\{v_{1}, v_{2}, v_{3}\right\}$ are linearly dependent
d. v_{1} can be written as a linear combination of v_{2}, v_{3}, v_{4}

The correct answer is: $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for V

Question 3
Correct
Mark 1.00 out of
1.00

The nullity of $A=\left(\begin{array}{ccccc}1 & 1 & 0 & 2 & 0 \\ 1 & 2 & -1 & 0 & 1 \\ 2 & 3 & -1 & 2 & 1\end{array}\right)$ is
Select one:
a. 4

- b. 3
\checkmark
c. 2
d. 1

The correct answer is: 3
Question 4
Correct
Mark 1.00 out of
1.00

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $[p(x)]_{E}=\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)$, then

Select one:
© a. $p(x)=3 x^{2}+2 x+4$
b. $p(x)=3 x^{2}+2 x+5$
c. $p(x)=3 x^{2}+x-3$
d. $p(x)=x^{2}-x+3$

The correct answer is: $p(x)=3 x^{2}+2 x+4$

```
Question 5
Incorrect
Mark 0.00 out of 1.00
```

Question 6
Incorrect
Mark 0.00 out of 1.00 \square

Question 7
Correct
Mark 1.00 out of
1.00

If $\left\{v_{1}, \cdots, v_{n}\right\}$ are linearly independent and v is not in $\operatorname{Span}\left\{v_{1}, \cdots, v_{n}\right\}$, then $\left\{v_{1}, \cdots, v_{n}, v\right\}$ are linearly independent.

Select one:
a. True
© b. False \boldsymbol{x}

The correct answer is: True
Let $S=\{f \in C[-1,1]: f(-1)=f(1)\}$, then S is a subspace of $C[-1,1]$.
Select one:
a. True
© b. False \boldsymbol{x}

The correct answer is: True

If A is a nonzero 3×2 matrix such that $A x=0$ has infinite number of solutions, then $\operatorname{rank}(A)=1$.

Select one:

- a. True \checkmark
b. False

The correct answer is: True

Question 8
Correct
Mark 1.00 out of
1.00

Let $S=\left\{\left(\begin{array}{c}a+b+2 c \\ a+2 c \\ a+b+2 c\end{array}\right): a, b \in \mathbb{R}\right\}$. Then dimension of S equals

Select one:

- a. 2
b. 0
c. 3
d. 1

The correct answer is: 2

Question 9
Correct
Mark 1.00 out of
1.00

$\operatorname{dim}\left(\operatorname{span}\left(x^{2}, 3+x^{2}, x^{2}+1\right)\right)$ is
Select one:
a. 0
b. 1

- c. 2
d. 3

The correct answer is: 2

Question 10
Correct
Mark 1.00 out of
1.00
dimension of the subspace $S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{cc}2 & 1 \\ 0 & 1\end{array}\right), A_{2}\left(\begin{array}{cc}-1 & 0 \\ 3 & 1\end{array}\right), A_{3}=\left(\begin{array}{cc}-8 & -3 \\ 6 & -1\end{array}\right)\right\}$ is
Select one:
a. 0
b. 1
(c. 2
d. 3

The correct answer is: 2

Question 11
Correct
Mark 1.00 out of
1.00

Which of the following is not a basis for the corresponding space

Select one:
a. $\left\{(1,1)^{T},(2,-3)^{T}\right\} ; \mathbb{R}^{2}$
© b. $\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}$
c. $\{5-x, x-1\} ; P_{2}$
d. $\left\{x+4,1-x^{2}, x^{2}+x+3\right\} ; P_{3}$

The correct answer is: $\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}$

```
Question 12
Correct
Mark 1.00 out of
1.00
```

The transition matrix from the standard basis $S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]$ to the ordered basis $U=\left[u_{1}=\binom{1}{2}, u_{2}=\binom{2}{5}\right]$ is

Select one:
a. $T=\left(\begin{array}{cc}-1 & 2 \\ 2 & -5\end{array}\right)$
(-). b. $T=\left(\begin{array}{cc}5 & -2 \\ -2 & 1\end{array}\right)$
c. $T=\left(\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right)$
d. $T=\left(\begin{array}{cc}1 & -2 \\ -2 & 5\end{array}\right)$

The correct answer is: $T=\left(\begin{array}{cc}5 & -2 \\ -2 & 1\end{array}\right)$

Question 13
Correct
Mark 1.00 out of
1.00

Question 14
Correct
Mark 1.00 out of
1.00

If A is a 5×4-matrix, and $A x=0$ has only the zero solution, then $\operatorname{rank}(A)=4$.
Select one:

- a. True \checkmark
b. False

The correct answer is: True

If the columns of $A_{n \times n}$ are linearly independent and $b \in \mathbb{R}^{n}$, then the system $A x=b$ has

Select one:
a. exactly 2 solutions
-b. exactly one solution \checkmark
c. no solution
d. infinitely many solutions

The correct answer is: exactly one solution
Question 15
Incorrect
Mark 0.00 out of
1.00

If A is a 3×5-matrix, rows of A are linearly independent, then
Select one:
a. $\operatorname{rank}(A)=\operatorname{nullity}(A)+3$
(b. $\operatorname{rank}(A)=\operatorname{nullity}(A)+2$
\times
c. $\operatorname{rank}(A)=\operatorname{nullity}(A)+1$
d. $\operatorname{rank}(A)=\operatorname{nullity}(A)$

The correct answer is: $\operatorname{rank}(A)=\operatorname{nullity}(A)+1$

```
Question 16
Correct
Mark 1.00 out of
1.00
```

\qquad
Question 17
Correct
Mark 1.00 out of
1.00

If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a vector space V, then the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is Select one:

- a. linearly independent and not a spanning set for V.
b. linearly independent and a spanning set for V.
c. linearly dependent and a spanning set
d. linearly dependent and not a spanning set for V.

The correct answer is: linearly independent and not a spanning set for V.
Question 18
Correct
Mark 1.00 out of
1.00

If A is a 3×2 matrix, then

Select one:

- a. The rows of A are linearly dependent
b. The columns of A are linearly dependent
c. The columns of A are linearly independent
d. $\operatorname{Rank}(A)=3$

The correct answer is: The rows of A are linearly dependent

Question 19
Incorrect
Mark 0.00 out of
1.00

Let A be an $m \times n$ matrix. If the rows of A are linearly dependent, then $n \leq m$
Select one:
a. True

- b. False \boldsymbol{x}

The correct answer is: True

```
Question }2
Correct
Mark 1.00 out of
1.00
```

Question 21
Correct
Mark 1.00 out of
1.00
1.00
1.00
- a. $\operatorname{nullity}(A) \geq 2$
b. The rows of A are linearly dependent
c. $\operatorname{Rank}(A)=2$
d. The columns of A are linearly independent
The correct answer is: $\operatorname{nullity}(A) \geq 2$
Question 22
Correct
Mark 1.00 out of
1.00
let A be a 4×7-matrix, if the row echelon form of A has 2 nonzero rows, then dim (column space of A) is
Select one:
- a. $2 \checkmark$
b. 3
c. 5
d. 7

The correct answer is: 2

Question 23
Correct
Mark 1.00 out of
1.00
if $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ is a spanning set for $\mathbb{R}^{3 \times 2}$, then
Select one:
a. $k \leq 6$
b. $k>6$
c. $k=6$

- d. $k \geq 6$

The correct answer is: $k \geq 6$

Question 24
Incorrect
Mark 0.00 out of
1.00

The coordinate vector of $6+8 x$ with respect to the basis $[2 x, 2]$ is $(4,3)^{T}$

Select one:

- a. False x
b. True

Question 25
Correct
Mark 1.00 out of
1.00

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $p(x)=2 x^{2}-2 x+1$, then the coordinate vector of $p(x)$ with respect to E is

Select one:
a. $\left(\begin{array}{c}-2 \\ -3 \\ 2\end{array}\right)$
-b. $\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$
c. $\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)$
d. $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$

The correct answer is: $\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$
Question 26
Incorrect
Mark 0.00 out of
1.00

If A is an $m \times n$-matrix, and columns of A are linearly independent, then
Select one:
a. $n \leq m$
(b. $m \leq n$
\times
c. $m=n+1$
d. $m=n$

The correct answer is: $n \leq m$
Question 27
Correct
Mark 1.00 out of
1.00

Let $S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x=y+1\right\}$, then S is a subspace of \mathbb{R}^{2}.
Select one:

- a. False \checkmark
b. True

The correct answer is: False

Question 28
Incorrect
Mark 0.00 out of
1.00

If $A=\left(\begin{array}{cccc}-1 & -2 & -1 & 0 \\ 1 & 2 & 2 & 0 \\ -2 & -4 & 0 & 0\end{array}\right)$, then $\operatorname{rank}(A)=3$.
Select one:
a. False
(b. True \mathbf{x}

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta / General / Second Exam

Started on Sunday, 10 January 2021, 9:45 AM
State Finished
Completed on Sunday, 10 January 2021, 10:59 AM
Time taken 1 hour 14 mins
Grade 22.00 out of 32.00 (69%)

Question 1
Correct
Mark 1.00 out of 1.00
dimension of the subspace $S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right), A_{2}\left(\begin{array}{cc}3 & -1 \\ 1 & 0\end{array}\right), A_{3}=\left(\begin{array}{cc}6 & -8 \\ -1 & -3\end{array}\right)\right\}$ is
Select one:
a. 3
() b. 2
\checkmark
c. 0

○. d. 1

The correct answer is: 2

Question 2

If A is a 3×3-matrix, and $A x=0$ has only the zero solution, then $\operatorname{nullity}(A)=$
Correct
Mark 1.00 out of 1.00

Select one:
(a. 0
b. 2
c. 3

○d. 1

The correct answer is: 0

Question 3

Correct
Mark 1.00 out
of 1.00

$$
\operatorname{dim}\left(\operatorname{span}\left(x^{2}, 3+x^{2}, x^{2}+1\right)\right) \text { is }
$$

Select one:
(a. 2
b. 3
C. 0

○d. 1

The correct answer is: 2

Question 4
Incorrect
Mark 0.00 out
of 1.00
if $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ is a spanning set for $\mathbb{R}^{3 \times 2}$, then
Select one:
() a. $k \leq 6$
\times
b. $k=6$
c. $k \geq 6$
d. $k>6$

The correct answer is: $k \geq 6$

Question 5
Correct
Mark 1.00 out of 1.00

Let $S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x=-y\right\}$, then S is a subspace of \mathbb{R}^{2}.
Select one:
a. False
(b. True

The correct answer is: True

Question 6
Correct
Mark 1.00 out of 1.00

If $f_{1}, f_{2}, \cdots, f_{n} \in C^{n-1}[a, b]$ and $W\left[f_{1}, f_{2}, \cdots, f_{n}\right]\left(x_{0}\right)=0$ for some $x_{0} \in[a, b]$, then $f_{1}, f_{2}, \cdots, f_{n}$ are linearly dependent.

Select one:
-
a. Falseb. True

The correct answer is: False

Question 7
Incorrect
Mark 0.00 out of 1.00

If A is a nonzero 4×2-matrix and $A x=0$ has infinitely many solutions, then $\operatorname{rank}(A)=$
Select one:
a. 3
(o) b. 2
\times
C. 1
d. 4

The correct answer is: 1

Question 8

Correct
Mark 1.00 out
of 1.00

The coordinate vector of $8+6 x$ with respect to the basis $[2 x, 2]$ is $(4,3)^{T}$

Select one:

- a. True
(b. False V

Question 9
Incorrect
Mark 0.00 out of 1.00

If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ forms a spanning set for a vector space $V, \operatorname{dim}(V)=3, v_{4}$ can be written as a linear combination of v_{1}, v_{2}, v_{3}, then

Select one:
(a. a. $\left\{v_{1}, v_{2}, v_{3}\right\}$ are linearly dependent \timesb. $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for Vc. v_{1} can be written as a linear combination of v_{2}, v_{3}, v_{4}d. $\left\{v_{1}, v_{2}, v_{3}\right\}$ do not form a spanning set for V

The correct answer is: $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for V

Question 10
Correct
Mark 1.00 out of 1.00

Let V be a vector space, $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ a spanning set for V, and $v \in V$, then the vectors $\left\{v_{1}, v_{2}, \ldots v_{n}, v\right\}$ form a spanning set for V.

Select one:
a. False
© b. True \downarrow

The correct answer is: True

Question 11
Incorrect
Mark 0.00 out of 1.00

Let A be a 4×5-matrix, with $\operatorname{rank}(A)=3$. Then The rows of A are linearly dependent.
Select one:
a. True
() b. False \boldsymbol{x}

The correct answer is: True

Question 12
Incorrect Mark 0.00 out of 1.00

Let A be a 2×4 matrix, and $\operatorname{rank}(A)=2$, then, the columns of A form a spanning set for \mathbb{R}^{2}.

Select one:
© a. False \boldsymbol{x}
b. True

The correct answer is: True

Question 13
Incorrect
Mark 0.00 out of 1.00

The coordinate vector of $\left(\begin{array}{l}-3 \\ -2 \\ -5\end{array}\right)$ with respect to the ordered basis $\left[\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)\right]$ is
Select one:
a. $\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)$
b. $\left(\begin{array}{c}1 \\ -4 \\ 3\end{array}\right)$
c. $\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)$

- d. $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$
\times

The correct answer is: $\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)$

Question 14
Correct
Mark 1.00 out of 1.00

Let A be a 4×3-matrix with nullity $(A)=0$. Then $\operatorname{rank}(A)=1$
Select one:

- a. False
- b. True

The correct answer is: False

Question 15
Correct
Mark 1.00 out of 1.00

Let $S=\left\{\left(\begin{array}{c}a+b+2 c \\ a+2 c \\ a+b+2 c\end{array}\right): a, b \in \mathbb{R}\right\}$. Then dimension of S equals
Select one:
© a. 2
b. 3

- c. 0
od. 1

The correct answer is: 2

Question 16
Correct
Mark 1.00 out of 1.00

The transition matrix from the standard basis $S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]$ to the ordered basis $U=\left[u_{1}=\binom{7}{2}, u_{2}=\binom{3}{1}\right]$ is

Select one:
a. $T=\left(\begin{array}{cc}-7 & 3 \\ 2 & -1\end{array}\right)$
b. $T=\left(\begin{array}{ll}7 & 3 \\ 2 & 1\end{array}\right)$
© c. $T=\left(\begin{array}{cc}1 & -3 \\ -2 & 7\end{array}\right)$
d. $T=\left(\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right)$

The correct answer is: $T=\left(\begin{array}{cc}1 & -3 \\ -2 & 7\end{array}\right)$

Question 17
Correct
Mark 1.00 out of 1.00

If A is a 3×3-matrix, and $A x=0$ has only the zero solution, then $\operatorname{rank}(A)=$
Select one:
a. 0
-b. 2
c. 1
© d. 3
\checkmark

The correct answer is: 3

Question 18
The vectors $\left\{(1,-1,-4)^{T},(1,-1,1)^{T},(1,-1,2)^{T}\right\}$ form a basis for \mathbb{R}^{3}.
Select one:
a. True
(o) b. False

The correct answer is: False

Question 19
Correct
Mark 1.00 out of 1.00

The functions $\sin x, \cos x, \sin (2 x)$ in $C^{2}[0,2 \pi]$ are
Select one:

- a. linearly independent
- b. linearly dependent

The correct answer is: linearly independent

Question 20
Correct
Mark 1.00 out of 1.00

If $A=\left(\begin{array}{cccc}1 & -2 & 1 & 0 \\ -1 & 2 & 2 & 0 \\ 2 & -4 & 0 & 0\end{array}\right)$, then $\operatorname{rank}(A)=3$.
Select one:
© a. False
b. True

The correct answer is: False

Question 21
Correct
Mark 1.00 out
of 1.00

The vectors $\left\{x+1, x^{2}+2 x+1, x^{2}+x+1\right\}$ form a basis for P_{3}.
Select one:
a. False

Ob. True

The correct answer is: True

Question 22
If A is a 3×5 matrix, then
Correct
Mark 1.00 out of 1.00

Select one:
a. The columns of A are linearly independent
b. The rows of A are linearly dependent
(c) c. $\operatorname{nullity}(A) \geq 2$
d. $\operatorname{Rank}(A)=2$

The correct answer is: $\operatorname{nullity}(A) \geq 2$

Question 23
Correct
Mark 1.00 out of 1.00

The nullity of $A=\left(\begin{array}{ccccc}1 & 4 & 1 & 1 & 1 \\ 2 & 6 & -1 & 0 & -1 \\ 3 & 10 & 0 & 4 & 0\end{array}\right)$ is
Select one:
(a) 2
b. 4
c. 1
-d. 3

The correct answer is: 2

Question 24
Correct
Mark 1.00 out of 1.00

If $f_{1}, f_{2}, \cdots, f_{n} \in C^{n-1}[a, b]$ and $W\left[f_{1}, f_{2}, \cdots, f_{n}\right]\left(x_{0}\right) \neq 0$ for some $x_{0} \in[a, b]$, then $f_{1}, f_{2}, \cdots, f_{n}$ are Select one:

- a. linearly dependentb. form a spanning set for $C^{n-1}[a, b]$
o c. linearly independent.

The correct answer is: linearly independent.

Question 25
Incorrect
Mark 0.00 out of 1.00
let A be a 3×5-matrix, if the row echelon form of A has 1 nonzero row, then $\operatorname{dim}(c o l u m n$ space of A) is Select one:
a. 0
-b. 2
(-) c. 3
x
d. 1

The correct answer is: 1

Question 26
Correct
Mark 1.00 out of 1.00

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $p(x)=-3 x^{2}+x+5$, then the coordinate vector of $p(x)$ with respect to E is

Select one:

- a. $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$
b. $\left(\begin{array}{c}3 \\ -3 \\ 2\end{array}\right)$
c. $\left(\begin{array}{c}2 \\ -3 \\ 3\end{array}\right)$
d. $\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right)$

The correct answer is: $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$

Question 27
Correct
Mark 1.00 out of 1.00

Let $E=[3-x, 2+x], F=[x, 1]$ be ordered bases for P_{2}. The transition matrix from E to F is Select one:
a. $\left(\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right)$
b. $\left(\begin{array}{cc}3 & -1 \\ 2 & 1\end{array}\right)$
c. $\left(\begin{array}{cc}-1 & 3 \\ 1 & 2\end{array}\right)$
od. $\left(\begin{array}{cc}-1 & 1 \\ 3 & 2\end{array}\right)$

The correct answer is: $\left(\begin{array}{cc}-1 & 1 \\ 3 & 2\end{array}\right)$

Question 28
Correct
Mark 1.00 out of 1.00

Let A be a 4×3 matrix, and nullity $(A)=0$, then
Select one:
© a. The columns of A are linearly independent
b. The rows of A are linearly independentc. $\operatorname{rank}(A)=1$d. the columns of A form a basis for \mathbb{R}^{4}

The correct answer is: The columns of A are linearly independent

Question 29
Incorrect
Mark 0.00 out of 1.00

Let A be a 3×5 matrix, and nullity $(A)=2$, then the columns of A form a aspanning set for \mathbb{R}^{3} Select one:

- a. True
© b. False \boldsymbol{x}

The correct answer is: True

If A is a 3×5-matrix, rows of A are linearly independent, then
Correct
Mark 1.00 out of 1.00

Question 31
Incorrect
Mark 0.00 out
of 1.00
ut

If V is a vector space of dimension n, then any subset of V which has more than n vectors is a spanning set for V.

Select one:
a. False
(b. True \boldsymbol{x}

The correct answer is: False

Question 32
Incorrect
Mark 0.00 out of 1.00

Let $S=\{f \in C[-1,1]: f$ is an odd function $\}$, then S is a subspace of $C[-1,1]$.
Select one:
(a. False \boldsymbol{x}
○b. True

The correct answer is: True

```
    Started on Sunday, 10 January 2021, 9:55 AM
            State Finished
    Completed on Sunday, 10 January 2021, 11:09 AM
    Time taken 1 hour 14 mins
            Grade 19.00 out of 32.00 (59%)
```

```
Question 1
Incorrect
Mark 0.00 out
of }1.0
If A is a \(3 \times 2\) matrix, then
Select one:
a. The rows of \(A\) are linearly dependent
b. \(\operatorname{Rank}(A)=3\)
c. The columns of \(A\) are linearly independent
© d. The columns of \(A\) are linearly dependent
\(\times\)
```

The correct answer is: The rows of A are linearly dependent

Question 2
Incorrect
Mark 0.00 out of 1.00

The transition matrix from the standard basis $S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]$ to the ordered basis $U=\left[u_{1}=\binom{1}{3}, u_{2}=\binom{2}{7}\right]$ is

Select one:
a. $T=\left(\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right)$
() b. $T=\left(\begin{array}{cc}1 & -2 \\ -3 & 7\end{array}\right)$
\times
c. $T=\left(\begin{array}{cc}-7 & 2 \\ 3 & -1\end{array}\right)$
d. $T=\left(\begin{array}{cc}7 & -2 \\ -3 & 1\end{array}\right)$

The correct answer is: $T=\left(\begin{array}{cc}7 & -2 \\ -3 & 1\end{array}\right)$

```
Question 3 If A is a 3\times3-matrix, and Ax=0 has only the zero solution, then rank (A)=
Incorrect
Mark 0.00 out
of }1.0
    Select one:
    a. }
    (a) b. }
                x
    c. }
    O. d. }
```

 The correct answer is: 3
 | Question 4 |
| :--- |
| Correct |
| Mark 1.00 out |
| of 1.00 |

of 1.00

The nullity of $A=\left(\begin{array}{ccccc}1 & 4 & 1 & 2 & 2 \\ 2 & 6 & -1 & 2 & 1 \\ 3 & 10 & 0 & 4 & 3\end{array}\right)$ is
Select one:
a. 1
(b. 3
c. 0
-d. 2

The correct answer is: 3

```
Question 5
Correct
Mark 1.00 out
of }1.0
```

If $A=\left(\begin{array}{cccc}1 & -2 & 1 & 0 \\ -1 & 2 & 2 & 0 \\ 2 & -2 & 0 & 0\end{array}\right)$, then $\operatorname{rank}(A)=3$.

Select one:
© a. True \checkmark
b. False

The correct answer is: True

Question 6
If A is a 3×5-matrix, rows of A are linearly independent, then
Incorrect
Mark 0.00 out of 1.00
\qquad
.00

[^0]let A be a 3×5-matrix, if the row echelon form of A has 1 nonzero row, then $\operatorname{dim}($ column space of A) is
Select one:

- a. 2
b. 3
(c) c. 1
\checkmark
- d. 0

The correct answer is: 1

```
Question 8
Incorrect
Mark 0.00 out
of 1.00
If \(T_{n \times n}\) is a transition matrix between two bases for a vector space \(V, \operatorname{dim}(V)=n>0\), then
Select one:
(0) a. \(\operatorname{nullity}(T)=n\)
\(\times\)
b. \(T\) is nonsingular
c. \(\operatorname{det}(T)=1\)
d. \(\operatorname{rank}(T)=1\)
```

The correct answer is: T is nonsingular

```
Question }
Incorrect
Mark 0.00 out
of 1.00
```

If S is a subset of a vector space V, and $0 \in S$, then S is a subspace of V.
Select one:
(a. True \boldsymbol{x}
b. False

The correct answer is: False
Question 10
Incorrect
Mark 0.00 out
of 1.00

If A is an $n \times n$ singular matrix, then
Select one:
(a) $\operatorname{arank}(A)=n$
\times
b. $N(A)=\{0\}$
c. The columns of A are linearly dependent
d. The rows of A are linearly independent

The correct answer is: The columns of A are linearly dependent

```
Question 11
Correct
Mark 1.00 out
of 1.00
```

Let A be a 5×4 matrix, and $\operatorname{rank}(A)=4$
Select one:
a. The rows of A are linearly independent
b. A has a row of zeros
c. $\operatorname{nullity}(A)=1$
© d. The columns of A are linearly independent

The correct answer is: The columns of A are linearly independent
\qquad
Let $S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x=1-y\right\}$, then S is a subspace of \mathbb{R}^{2}.
Select one:
a. True
(ob. False \checkmark

The correct answer is: False

Question 13
Correct
Mark 1.00 out of 1.00

Which of the following is not a basis for the corresponding space

Select one:
a. $\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}$
\checkmark
b. $\left\{x+4,1-x^{2}, x^{2}+x+3\right\} ; P_{3}$
c. $\{5-x, x-1\} ; P_{2}$
d. $\left\{(1,1)^{T},(2,-3)^{T}\right\} ; \mathbb{R}^{2}$

The correct answer is: $\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}$

Question 14
Correct
Mark 1.00 out
of 1.00

If A is a 4×6 matrix, then nullity of $A \geq 2$.
Select one:

- a. True \downarrow
b. False

The correct answer is: True

Question 15

Incorrect
Mark 0.00 out
of 1.00
The vectors $\left\{(1,-1,1)^{T},(1,-3,2)^{T},(1,-2,1)^{T}\right\}$ form a basis for \mathbb{R}^{3}.
Select one:
(a) False \boldsymbol{x}
b. True

The correct answer is: True

Question 16
Correct
Mark 1.00 out of 1.00

If A, B are two row equivalent $m \times n$-matrices, then $\operatorname{rank}(A)=\operatorname{rank}(B)$

Select one:

- a. True \downarrow
b. False

The correct answer is: True

```
Question }1
Correct
Mark 1.00 out
of 1.00
```

tion 18
Correct
Mark 1.00 out
of 1.00

If A is a nonzero 3×2 matrix such that $A x=0$ has infinite number of solutions, then $\operatorname{rank}(A)=1$.
Select one:
a. False
(ob. True \vee

The correct answer is: True

Question 19
Correct
Mark 1.00 out of 1.00

Let $S=\left\{\left(\begin{array}{c}a+b+2 c \\ a+2 c \\ a+b+2 c\end{array}\right): a, b \in \mathbb{R}\right\}$. Then dimension of S equals
Select one:
a. 1
b. 0
c. 3
(c) d. 2

The correct answer is: 2

```
Question }2
Correct
Mark 1.00 out
of 1.00
    If }A\mathrm{ is an }n\timesn\mathrm{ nonsingular matrix, then nullity of }(A)=
    Select one:
    a. False
    Ob. True \
    The correct answer is: True
Question }2
Incorrect
Mark 0.00 out
of 1.00
    The functions }\operatorname{sin}x,\operatorname{cos}x,\operatorname{sin}(2x)\mathrm{ in }\mp@subsup{C}{}{2}[0,2\pi]\mathrm{ are
    Select one:
    a. linearly independent
    (0) b. linearly dependent x
```

Question 22
Correct
Mark 1.00 out of 1.00
dimension of the subspace $S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right), A_{2}\left(\begin{array}{cc}3 & 1 \\ -1 & 0\end{array}\right), A_{3}=\left(\begin{array}{cc}6 & -1 \\ -8 & -3\end{array}\right)\right\}$ is
Select one:
a. 0
b. 3
c. 1
(0) d. 2

The correct answer is: 2

Question 23
Correct
Mark 1.00 out of 1.00
let A be a 4×7-matrix, if the row echelon form of A has 2 nonzero rows, then dim (column space of A) is Select one:
-a. 7
b. 3
(o. c.2 $\sqrt{ }$
-d. 5

The correct answer is: 2
Question 24
Incorrect
Mark 0.00 out
of 1.00

If $v_{1}, v_{2}, \cdots, v_{k}$ are vectors in a vector space V, and $\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k}\right)=\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k-1}\right)$, then v_{k} can be written as alinear combination of $v_{1}, v_{2}, \cdots, v_{k-1}$

Select one:

- a. True
(b. False \boldsymbol{x}

The correct answer is: True

Question 25
Correct
Mark 1.00 out of 1.00

Let $E=[3-x, 2+x], F=[1, x]$ be ordered bases for P_{2}. The transition matrix from E to F is
Select one:
a. $\left(\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right)$
b. $\left(\begin{array}{cc}-1 & 1 \\ 3 & 2\end{array}\right)$
c. $\left(\begin{array}{cc}-1 & 1 \\ 2 & 3\end{array}\right)$
(o). $\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)$

The correct answer is: $\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)$

```
Question 26
Incorrect
Mark 0.00 out
of }1.0
```

Let V be a vector space, $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ a spanning set for V, and $v \in V$, then the vectors $\left\{v_{1}, v_{2}, \ldots v_{n}, v\right\}$ form a spanning set for V.

Select one:
(o) a. False \boldsymbol{x}
b. True

The correct answer is: True
Question 27
Incorrect
Mark 0.00 out
of 1.00
of 1.00
都

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $p(x)=3 x^{2}-3 x$, then the coordinate vector of $p(x)$ with respect to E is

Select one:
(o) a. $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$
\times
b. $\left(\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right)$
c. $\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)$
d. $\left(\begin{array}{c}-2 \\ -3 \\ 2\end{array}\right)$

The correct answer is: $\left(\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right)$
Question 28
Correct

Mark 1.00 out
of 1.00

If A is an $m \times n$-matrix, and columns of A form a spanning set for \mathbb{R}^{m}, then

Select one:
a. $n \leq m$
b. $m=n$
c. $m=n+1$
(o) d. $m \leq n$
\checkmark

The correct answer is: $m \leq n$

Let $S=\{f \in C[-1,1]: f$ is an odd function $\}$, then S is a subspace of $C[-1,1]$.
Correct
Mark 1.00 out of 1.00

Select one:
a. False
© b. True \downarrow

```
Question 30
Correct
Mark 1.00 out
of 1.00
```

If A is a 4×3 matrix such that $N(A)=\{0\}$, and b can be written as a linear combination of the columns of A, then

Select one:
(a . The system $A x=b$ has exactly one solution
b. The system $A x=b$ has infinitely many solutions
c. The system $A x=b$ is inconsistent
d. The system $A x=b$ has exactly two solutions

The correct answer is: The system $A x=b$ has exactly one solution

```
Question 31 The coordinate vector of 6+4x with respect to the basis [2x,2] is (3,2)T
Incorrect
Mark 0.00 out
of 1.00
Select one:
    a. False
    (a) b. True x
The correct answer is: False
```

```
Question 32
```

Question 32
Correct
Correct
Mark 1.00 out
Mark 1.00 out
of 1.00
of 1.00
The vectors {x+1,\mp@subsup{x}{}{2}+2x+1,\mp@subsup{x}{}{2}+x+1} form a basis for }\mp@subsup{P}{3}{}\mathrm{ .
Select one:
a. False
(b. True \checkmark
The correct answer is: True

```

\title{
Started on Sunday, 10 January 2021, 9:47 AM \\ State Finished \\ Completed on Sunday, 10 January 2021, 10:33 AM \\ Time taken 45 mins 22 secs \\ Grade 30.00 out of 32.00 (94\%)
}

Question 1
Correct
Mark 1.00 out of 1.00

The vectors \(\left\{x^{2}+2 x+1, x-1, x^{2}+x+1\right\}\) form a basis for \(P_{3}\).
Select one:
a. False
© b. True \(\downarrow\)

\section*{The correct answer is: True}

Question 2
Correct
Mark 1.00 out of 1.00

Let \(E=\left[2+x, 1-x, x^{2}+1\right]\) be an ordered basis for \(P_{3}\). If \(p(x)=2 x^{2}-2 x+1\), then the coordinate vector of \(p(x)\) with respect to \(E\) is

Select one:
a. \(\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)\)
b. \(\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)\)
c. \(\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)\)
d. \(\left(\begin{array}{c}-2 \\ -3 \\ 2\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)\)

\section*{Question 3}

Correct
Mark 1.00 out
of 1.00

If \(A\) is a nonzero \(4 \times 2\)-matrix and \(A x=0\) has infinitely many solutions, then \(\operatorname{rank}(A)=\)
Select one:
a. 4
-b. 3
(-) c. 1
\(\checkmark\)
d. 2

Question 4
Correct
Mark 1.00 out of 1.00

If \(A=\left(\begin{array}{cccc}1 & -2 & 1 & 0 \\ -1 & 2 & 3 & 0 \\ 2 & -1 & 0 & 0\end{array}\right)\), then \(\operatorname{rank}(A)=3\).
Select one:
- a. True \(\checkmark\)
b. False

The correct answer is: True

Question 5
Correct
Mark 1.00 out
of 1.00

Every spanning set for \(\mathbb{R}^{3}\) contains at least 3 vectors.
Select one:
a. False
© b. True \(\vee\)

The correct answer is: True

\section*{Question 6}

Correct
Mark 1.00 out of 1.00 f 1.00

The transition matrix from the standard basis \(S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]\) to the ordered basis \(U=\left[u_{1}=\binom{1}{3}, u_{2}=\binom{2}{7}\right]\) is

Select one:
a. \(T=\left(\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right)\)
b. \(T=\left(\begin{array}{cc}1 & -2 \\ -3 & 7\end{array}\right)\)
c. \(T=\left(\begin{array}{cc}-7 & 2 \\ 3 & -1\end{array}\right)\)
d. \(T=\left(\begin{array}{cc}7 & -2 \\ -3 & 1\end{array}\right)\)

The correct answer is: \(T=\left(\begin{array}{cc}7 & -2 \\ -3 & 1\end{array}\right)\)

\section*{Question 7}

Correct
Mark 1.00 out
of 1.00

If \(A\) is a \(3 \times 4\)-matrix, rows of \(A\) are linearly independent, then
Select one:
a. \(\operatorname{rank}(A)=3-\operatorname{nullity}(A)\)
( b. \(\operatorname{nullity}(A)=1\)
c. \(\operatorname{nullity}(A)=3\)d. \(\operatorname{rank}(A)=\operatorname{nullity}(A)\)

The correct answer is: \(\operatorname{nullity}(A)=1\)

\section*{Question 8}

\section*{Correct}

Mark 1.00 out of 1.00

The coordinate vector of \(8+6 x\) with respect to the basis \([2,2 x]\) is \((4,3)^{T}\)
Select one:a. Falseb. True

The correct answer is: True

\section*{Question 9}

\section*{Correct}

Mark 1.00 out
of 1.00
The rank of \(A=\left(\begin{array}{ccccc}1 & 4 & 1 & 2 & 0 \\ 2 & 6 & -1 & 2 & -1 \\ 3 & 10 & 0 & 4 & 0\end{array}\right)\) is
Select one:
a. 4
b. 1
-c. 2
( d. 3

\section*{The correct answer is: 3}

Question 10
Correct
Mark 1.00 out of 1.00

If \(A\) is an \(n \times n\) singular matrix, then
Select one:
a. \(N(A)=\{0\}\)
b. \(\operatorname{rank}(A)=n\)
( c. The columns of \(A\) are linearly dependent
d. The rows of \(A\) are linearly independent

The correct answer is: The columns of \(A\) are linearly dependent

\section*{Question 11}

Correct
Mark 1.00 out of 1.00

If \(A\) is an \(m \times n\)-matrix, and columns of \(A\) are linearly independent, then Select one:
a. a. \(m=n\)b. \(n \leq m\)
c. \(m \leq n\)d. \(m=n+1\)

Question 12
Correct
Mark 1.00 out of 1.00

Let \(E=[3-x, 2+x], F=[1, x]\) be ordered bases for \(P_{2}\). The transition matrix from \(E\) to \(F\) is
Select one:
a. \(\left(\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right)\)
- b. \(\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)\)
c. \(\left(\begin{array}{cc}-1 & 1 \\ 2 & 3\end{array}\right)\)
d. \(\left(\begin{array}{cc}-1 & 1 \\ 3 & 2\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)\)

Question 13
Correct
Mark 1.00 out of 1.00

Question 14
Correct
Mark 1.00 out
of 1.00
Let \(S=\{f \in C[-1,1]: f\) is an odd function \(\}\), then \(S\) is a subspace of \(C[-1,1]\).
Select one:
© a. True \(\checkmark\)
b. False

The correct answer is: True

The vectors \(\left\{(1,-1,1)^{T},(1,-1,2)^{T},(1,-1,1)^{T}\right\}\) form a basis for \(\mathbb{R}^{3}\).
Select one:
a. True
© b. False

The correct answer is: False

Question 15
If \(A\) is a \(3 \times 3\)-matrix, and \(A x=0\) has only the zero solution, then \(\operatorname{rank}(A)=\)
Correct
Mark 1.00 out of 1.00

Select one:
a. 0
(-b. 3
\(\checkmark\)
c. 2
-d. 1

The correct answer is: 3

Question 16
Correct
Mark 1.00 out of 1.00

The coordinate vector of \(\left(\begin{array}{l}-3 \\ -2 \\ -5\end{array}\right)\) with respect to the ordered basis \(\left[\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)\right]\) is
Select one:
a. \(\left(\begin{array}{c}1 \\ -4 \\ 3\end{array}\right)\)
b. \(\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\)
c. \(\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)\)
(c). \(\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)\)

Question 17
Correct
Mark 1.00 out
of 1.00
Let \(S=\left\{\left(\begin{array}{c}a+b+2 c \\ a+2 c \\ a+b+2 c\end{array}\right): a, b \in \mathbb{R}\right\}\). Then dimension of \(S\) equals
Select one:
(a. 2
-b. 3
c. 0
od. 1

The correct answer is: 2

Question 18
Incorrect
Mark 0.00 out of 1.00
dimension of the subspace \(S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{cc}1 & 1 \\ 2 & 0\end{array}\right), A_{2}\left(\begin{array}{cc}0 & 1 \\ -1 & 3\end{array}\right), A_{3}=\left(\begin{array}{cc}-3 & -1 \\ -8 & 6\end{array}\right)\right\}\) is
Select one:
- a. 2
b. 0
- c. 3
\(\times\)
-d. 1

The correct answer is: 2

Question 19
Correct
Mark 1.00 out
of 1.00

If \(A\) is an \(m \times n\)-matrix, and columns of \(A\) form a spanning set for \(\mathbb{R}^{m}\), then
Select one:
( a. \(m \leq n\)
b. \(n \leq m\)
c. \(m=n\)
d. \(m=n+1\)

The correct answer is: \(m \leq n\)

Question 20
Correct
Mark 1.00 out of 1.00

Let \(E=\left[2+x, 1-x, x^{2}+1\right]\) be an ordered basis for \(P_{3}\). If \([p(x)]_{E}=\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)\), then
Select one:
- a. \(p(x)=3 x^{2}+2 x+4\)
b. \(p(x)=x^{2}-x+3\)
c. \(p(x)=3 x^{2}+2 x+5\)
d. \(p(x)=3 x^{2}+x-3\)

The correct answer is: \(p(x)=3 x^{2}+2 x+4\)

\section*{Question 21}

If \(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\) is a basis for a vector space \(V\), then the set \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is
Correct
Mark 1.00 out of 1.00

Question 23

\section*{Correct}

Mark 1.00 out of 1.00

Let \(V\) be a vector space, \(\left\{v_{1}, v_{2}, \ldots v_{n}\right\}\) a spanning set for \(V\), and \(v \in V\), then the vectors \(\left\{v_{1}, v_{2}, \ldots v_{n}, v\right\}\) form a spanning set for \(V\).

Select one:
a. False
© b. True

\section*{The correct answer is: True}

\section*{Question 24}

Correct
Mark 1.00 out of 1.00

Every linearly independent set of vectors in \(\mathbb{R}^{4}\) has exactly 4 vectors.
Select one:
© a. False
-b. True

The correct answer is: False

Question 25
If \(A\) is an \(n \times n\)-matrix and for each \(b \in \mathbb{R}^{n}\) the system \(A x=b\) has a unique solution, then
Correct
Mark 1.00 out of 1.00

Select one:
\(\operatorname{arank}(A)=n-1\)
© b. \(A\) is nonsingular
c. \(\operatorname{nullity}(A)=1\)
d. \(A\) is singular

The correct answer is: \(A\) is nonsingular

Question 26
Correct
Mark 1.00 out of 1.00

Let \(S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x=1-y\right\}\), then \(S\) is a subspace of \(\mathbb{R}^{2}\).
Select one:a. Trueb. False

\section*{The correct answer is: False}

Question 27
Correct
Mark 1.00 out of 1.00

If \(A\) is a \(4 \times 3\) matrix such that \(N(A)=\{0\}\), and \(b\) can be written as a linear combination of the columns of \(A\), then

Select one:
a. The system \(A x=b\) has exactly two solutions
( b. The system \(A x=b\) has exactly one solution
c. The system \(A x=b\) has infinitely many solutions
d. The system \(A x=b\) is inconsistent

Question 28
Correct
Mark 1.00 out
of 1.00

Correct
Mark 1.00 out
of 1.00

\section*{Question 29}

Let \(A\) be a \(4 \times 3\)-matrix with nullity \((A)=0\). Then \(\operatorname{rank}(A)=1\)
Select one:
- a. Trueb. False

The correct answer is: False

If the columns of \(A_{n \times n}\) are linearly independent and \(b \in \mathbb{R}^{n}\), then the system \(A x=b\) is inconsistent.
Select one:
-
a. Falseb. True

The correct answer is: False

Question 30
Correct
Mark 1.00 out of 1.00

Let \(V\) be a vector space of dimension 4 and \(W=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}\) a set of nonzero vectors of \(V\), then Select one:
a. \(W\) is a basis
b. \(W\) is linearly independent
c. \(W\) is a spanning set
(o) d. \(W\) is linearly dependent

\section*{The correct answer is: \(W\) is linearly dependent}

Question 31
Correct
Mark 1.00 out of 1.00

If \(A\) is a \(3 \times 5\)-matrix, rows of \(A\) are linearly independent, then

Select one:
(o. arank \((A)=\operatorname{nullity}(A)+1\)
b. \(\operatorname{rank}(A)=\operatorname{nullity}(A)+3\)
c. \(\operatorname{rank}(A)=\operatorname{nullity}(A)\)
d. \(\operatorname{rank}(A)=\operatorname{nullity}(A)+2\)

The correct answer is: \(\operatorname{rank}(A)=\operatorname{nullity}(A)+1\)

\section*{Question 32}

Correct
Mark 1.00 out of 1.00

If \(v_{1}, v_{2}, \cdots, v_{n} \in V, \operatorname{dim}(V)=n\) and \(v_{1}, v_{2}, \cdots, v_{n}\) are linearly independent, then Span \(\left(v_{1}, v_{2}, \cdots, v_{n}\right)=V\).

Select one:
- a. True \(\downarrow\)
b. False
```

 Started on Sunday, 10 January 2021, 9:46 AM
 State Finished
 Completed on Sunday, 10 January 2021, 11:01 AM
Time taken 1 hour 15 mins
Grade 25.00 out of 32.00 (78%)

```

Question 1
Correct
Mark 1.00 out of 1.00

If \(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\) is a basis for a vector space \(V\), then the set \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is

Select one:
a. linearly dependent and not a spanning set for \(V\).
( b. linearly independent and not a spanning set for \(V\).
c. linearly independent and a spanning set for \(V\).
d. linearly dependent and a spanning set

The correct answer is: linearly independent and not a spanning set for \(V\).

\section*{Question 2}

Correct
Mark 1.00 out
of 1.00
If \(A\) is a \(3 \times 5\)-matrix, rows of \(A\) are linearly independent, then

Select one:
a. \(\operatorname{rank}(A)=\operatorname{nullity}(A)+2\)
b. \(\operatorname{rank}(A)=\operatorname{nullity}(A)\)
c. \(\operatorname{rank}(A)=\operatorname{nullity}(A)+3\)
( \(\mathrm{d} \cdot \operatorname{rank}(A)=\operatorname{nullity}(A)+1\)

The correct answer is: \(\operatorname{rank}(A)=\operatorname{nullity}(A)+1\)

\section*{Question 3}

\section*{Correct}

Mark 1.00 out of 1.00

If \(A\) is a \(3 \times 2\) matrix, then
Select one:
a. The columns of \(A\) are linearly independentb. The rows of \(A\) are linearly dependentc. \(\operatorname{Rank}(A)=3\)d. The columns of \(A\) are linearly dependent

The correct answer is: The rows of \(A\) are linearly dependent

\section*{Question 4} Incorrect

Mark 0.00 out of 1.00

The coordinate vector of \(6+4 x\) with respect to the basis \([2 x, 2]\) is \((3,2)^{T}\)

Select one:
(a) True \(\boldsymbol{x}\)
b. False

The correct answer is: False

Question 5
Correct
Mark 1.00 out of 1.00

The rank of \(A=\left(\begin{array}{ccccc}1 & 4 & 1 & 2 & 2 \\ 2 & 6 & -1 & 2 & 1 \\ 3 & 10 & 0 & 4 & 3\end{array}\right)\) is
Select one:
a. 3

○. 1
( c. 2
d. 4

The correct answer is: 2

Question 6
Correct
Mark 1.00 out of 1.00

If \(A=\left(\begin{array}{cccc}-1 & -2 & -1 & 0 \\ 1 & 2 & 2 & 0 \\ -2 & -4 & 0 & 0\end{array}\right)\), then \(\operatorname{rank}(A)=3\).

Select one:
a. True
( b. False \(\boldsymbol{V}\)

The correct answer is: False

\section*{Question 7}

Correct
Mark 1.00 out of 1.00

The vectors \(\left\{-x+1,2 x^{2}+3 x+3, x^{2}+x+2\right\}\) form a basis for \(P_{3}\).

Select one:
O a. False
○. True

\section*{The correct answer is: False}

Question 8
Correct
Mark 1.00 out of 1.00

Let \(V\) be a vector space, \(v_{1}, v_{2}, \ldots v_{n} \in V\) be linearly independent, and \(v \in V\), then the vectors \(v_{1}, v_{2}, \ldots v_{n}, v\) are linearly independent.

Select one:
a. True

Ob. False

The correct answer is: False

Question 9
Correct
Mark 1.00 out of 1.00
dimension of the subspace \(S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right), A_{2}\left(\begin{array}{cc}3 & 1 \\ -1 & 0\end{array}\right), A_{3}=\left(\begin{array}{cc}6 & -1 \\ -8 & -3\end{array}\right)\right\}\) is
Select one:
○. 1
b. 3
( C. 2
d. 0

The correct answer is: 2

Question 10
Incorrect
Mark 0.00 out of 1.00

If \(T_{n \times n}\) is a transition matrix between two bases for a vector space \(V\), \(\operatorname{dim}(V)=n>0\), then Select one:
( \(\operatorname{ar} \cdot \operatorname{rank}(T)=1\)
\(x\)
b. \(\operatorname{det}(T)=1\)
c. \(\operatorname{nullity}(T)=n\)
d. \(T\) is nonsingular

The correct answer is: \(T\) is nonsingular

Question 11
Correct
Mark 1.00 out of 1.00

Let \(S=\{f \in C[-1,1]: f(-1)=f(1)\}\), then \(S\) is a subspace of \(C[-1,1]\).
Select one:
O a. True \(\sqrt{ }\)
b. False

\section*{The correct answer is: True}

Question 12
Correct
Mark 1.00 out of 1.00

Let \(A\) be a \(4 \times 6\) matrix, and nullity \((A)=2\), then the system \(A x=b\) has infinite number of solutions for every \(b \in \mathbb{R}^{4}\).

Select one:
- a. True -
b. False

The correct answer is: True

Question 13
Correct
Mark 1.00 out of 1.00

Let \(S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x=1-y\right\}\), then \(S\) is a subspace of \(\mathbb{R}^{2}\).
Select one:
a. True

○ b. False \(V\)

Question 14
Correct
Mark 1.00 out
Mark 1.00
of 1.00
\(\operatorname{dim}\left(\operatorname{span}\left(x^{2}, 3+x^{2}, x^{2}+1\right)\right)\) is
Select one:
a. 1
b. 0
©. 3
(o) d. 2


The correct answer is: 2

Question 15
Correct
Mark 1.00 out
of 1.00

If \(v_{1}, v_{2}, \cdots, v_{n} \in V, \operatorname{dim}(V)=n\) and \(v_{1}, v_{2}, \cdots, v_{n}\) are linearly independent, then Span \(\left(v_{1}, v_{2}, \cdots, v_{n}\right)=V\).

Select one:
a. False
© b. True

\section*{The correct answer is: True}

Question 16
Correct
Mark 1.00 out of 1.00

Question 17
Incorrect
Mark 0.00 out of 1.00
let \(A\) be a \(3 \times 5\)-matrix, if the row echelon form of \(A\) has 1 nonzero row, then \(\operatorname{dim}(c o l u m n\) space of \(A\) ) is Select one:
a. 2
-b. 0
c. 3
( d. 1


The correct answer is: 1

If \(f_{1}, f_{2}, \cdots, f_{n} \in C^{n-1}[a, b]\) and \(W\left[f_{1}, f_{2}, \cdots, f_{n}\right]\left(x_{0}\right)=0\) for some \(x_{0} \in[a, b]\), then \(f_{1}, f_{2}, \cdots, f_{n}\) are linearly dependent.

Select one:
a. False
(o) b. True \(\boldsymbol{x}\)

The correct answer is: False

Question 18
Incorrect
Mark 0.00 out of 1.00

Let \(E=[3-x, 2+x], F=[1, x]\) be ordered bases for \(P_{2}\). The transition matrix from \(E\) to \(F\) is Select one:
a. \(\left(\begin{array}{cc}-1 & 1 \\ 3 & 2\end{array}\right)\)
b. \(\left(\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right)\)
© C. \(\left(\begin{array}{cc}-1 & 1 \\ 2 & 3\end{array}\right)\)
\(\times\)
d. \(\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)\)

Question 19
Correct
Mark 1.00 out of 1.00

Let \(E=\left[2+x, 1-x, x^{2}+1\right]\) be an ordered basis for \(P_{3}\). If \(p(x)=-3 x^{2}+x+5\), then the coordinate vector of \(p(x)\) with respect to \(E\) is

Select one:
a. \(\left(\begin{array}{c}3 \\ -3 \\ 2\end{array}\right)\)
b. \(\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right)\)
c. \(\left(\begin{array}{c}2 \\ -3 \\ 3\end{array}\right)\)
od. \(\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)\)

Question 20
Incorrect
Mark 0.00 out of 1.00

The transition matrix from the standard basis \(S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]\) to the ordered basis \(U=\left[u_{1}=\binom{2}{3}, u_{2}=\binom{1}{2}\right]\) is

Select one:
a. \(T=\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)\)
b. \(T=\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right)\)
c. c. \(T=\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)\)
\(x\)
d. \(T=\left(\begin{array}{cc}-2 & 1 \\ 3 & -2\end{array}\right)\)

The correct answer is: \(T=\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)\)

Question 21
Correct
Mark 1.00 out
of 1.00
The coordinate vector of \(\left(\begin{array}{c}-3 \\ -2 \\ -5\end{array}\right)\) with respect to the ordered basis \(\left[\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)\right]\) is

Select one:
a. \(\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\)
b. \(\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)\)
c. \(\left(\begin{array}{c}1 \\ -4 \\ 3\end{array}\right)\)
d. \(\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)\)

If two nonzero vectors in a vector space \(V\) are linearly dependent, then each of them is a scalar multiple of the other.

Select one:
O a. True \(\gamma\)
b. False

Question 23 Incorrect Mark 0.00 out of 1.00

Which of the following is not a basis for the corresponding space
Select one:
© a. \(\left\{x+4,1-x^{2}, x^{2}+x+3\right\} ; P_{3}\)
\(\times\)
b. \(\left\{(1,1)^{T},(2,-3)^{T}\right\} ; \mathbb{R}^{2}\)
c. \(\{5-x, x-1\} ; P_{2}\)
d. \(\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}\)

The correct answer is: \(\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}\)

Question 24
Correct
Mark 1.00 out of 1.00

If \(v_{1}, v_{2}, \cdots, v_{k}\) are vectors in a vector space \(V\), and
\(\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k}\right)=\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k-1}\right)\), then \(v_{k}\) can be written as alinear combination of \(v_{1}, v_{2}, \cdots, v_{k-1}\)

Select one:a. Trueb. False

The correct answer is: True

If \(A\) is an \(m \times n\)-matrix, and columns of \(A\) are linearly independent, then
Correct

Mark 1.00 out of 1.00

Select one:
a. \(m=n\)
b. \(m=n+1\)
c. \(m \leq n\)
() d. \(n \leq m\)

The correct answer is: \(n \leq m\)

\section*{Question 26}

Correct
Mark 1.00 out of 1.00

Let \(A\) be a \(5 \times 4\) matrix, and \(\operatorname{rank}(A)=4\)

Select one:
a. \(A\) has a row of zeros
© b. The columns of \(A\) are linearly independent
c. \(\operatorname{nullity}(A)=1\)d. The rows of \(A\) are linearly independent

The correct answer is: The columns of \(A\) are linearly independent

Question 27
Incorrect
Mark 0.00 out of 1.00

If \(A\) is a nonzero \(4 \times 2\)-matrix and \(A x=0\) has infinitely many solutions, then \(\operatorname{rank}(A)=\)
Select one:
(a. 2
\(\times\)
b. 4
c. 3
od. 1

\section*{The correct answer is: 1}

Question 28
Correct
Mark 1.00 out of 1.00

If \(A\) is a \(4 \times 3\) matrix with \(\operatorname{rank}(A)=3\), then the homogeneous system \(A x=0\) has a nontrivial solution.
Select one:
- a. Falseb. True

The correct answer is: False

\section*{Question 29}

Correct
Mark 1.00 out of 1.00

Question 30
Correct
Mark 1.00 out of 1.00
let \(A\) be a \(4 \times 7\)-matrix, if the row echelon form of \(A\) has 2 nonzero rows, then \(\operatorname{dim}(\) column space of \(A\) ) is Select one:
a. 7
© c. \(2 \checkmark\)
d. 3

\section*{The correct answer is: 2}

The functions \(\sin x, \cos x, \sin (2 x)\) in \(C^{2}[0,2 \pi]\) are

Select one:
a. linearly dependent
( b. linearly independent

The correct answer is: linearly independent

Question 31
Correct
Mark 1.00 out of 1.00

If \(A\) is a \(3 \times 3\)-matrix, and \(A x=0\) has only the zero solution, then \(\operatorname{nullity}(A)=\)

Select one:
a. 1
b. 3
C. 2
- d. 0
```

Question 32 The vectors {(1,-1, -4) T},(1,-1,1\mp@subsup{)}{}{T},(1,-1,2\mp@subsup{)}{}{T}}\mathrm{ form a basis for }\mp@subsup{\mathbb{R}}{}{3}
Correct
Mark 1.00 out
of 1.00
Select one:
O}\mathrm{ a. False
b. True

```

The correct answer is: False

Started on Sunday, 10 January 2021, 9:53 AM
State Finished
Completed on Sunday, 10 January 2021, 11:07 AM
Time taken 1 hour 14 mins
Grade 25.00 out of 32.00 ( \(\mathbf{7 8 \%}\) )

Question 1
Correct
Mark 1.00 out of 1.00

Let \(E=[2+x, 3-x], F=[1, x]\) be ordered bases for \(P_{2}\). The transition matrix from \(E\) to \(F\) is

Select one:
a. \(\left(\begin{array}{cc}2 & 1 \\ 3 & -1\end{array}\right)\)
b. \(\left(\begin{array}{cc}1 & -1 \\ 3 & 2\end{array}\right)\)
c. \(\left(\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right)\)
od. \(\left(\begin{array}{cc}2 & 3 \\ 1 & -1\end{array}\right)\)
\(\checkmark\)

The correct answer is: \(\left(\begin{array}{cc}2 & 3 \\ 1 & -1\end{array}\right)\)

Question 2
Incorrect
Mark 0.00 out of 1.00

Let \(A\) be a \(4 \times 5\)-matrix, with \(\operatorname{rank}(A)=3\). Then The rows of \(A\) are linearly dependent.

Select one:
a. True
() b. False \(\boldsymbol{x}\)

\section*{The correct answer is: True}

Question 3
Correct
Mark 1.00 out of 1.00

Let \(V\) be a vector space of dimension 4 and \(W=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}\) a set of nonzero vectors of \(V\), then Select one:
© a. \(W\) is linearly dependent
b. \(W\) is a basis
c. \(W\) is a spanning set
d. \(W\) is linearly independent

The correct answer is: \(W\) is linearly dependent

Question 4
Correct
Mark 1.00 out of 1.00

Let \(S=\left\{p(x)=a x^{2}+b x+c \in P_{3}: \int_{0}^{1} p(x) d x=0\right\}\). The dimension of \(S\) is.

Select one:
a. 1
b. 3
( C. 2
d. 4

The correct answer is: 2

\section*{Question 5}

Correct
Mark 1.00 out
of 1.00
The vectors \(\left\{(1,-1,1)^{T},(1,-3,2)^{T},(1,-2,0)^{T}\right\}\) form a basis for \(\mathbb{R}^{3}\).
Select one:
a. False
© b. True

The correct answer is: True

Question 6
Correct
Mark 1.00 out of 1.00

Let \(S=\{f \in C[-1,1]: f\) is an odd function \(\}\), then \(S\) is a subspace of \(C[-1,1]\).
Select one:
O a. True \(V\)
b. False

The correct answer is: True

Question 7
Correct
Mark 1.00 out
of 1.00
Let \(A\) be a \(2 \times 4\) matrix, and \(\operatorname{rank}(A)=2\), then, the columns of \(A\) form a spanning set for \(\mathbb{R}^{2}\).
Select one:
a. False
© b. True

The correct answer is: True

Question 8
let \(A\) be a \(4 \times 7\)-matrix, if the row echelon form of \(A\) has 2 nonzero rows, then \(\operatorname{dim}(\) column space of \(A\) ) is
a. 7
(b. 2 -
c. 3
d. 5

Question 9
Incorrect
Mark 0.00 out
of 1.00
If \(A\) is a \(3 \times 3\)-matrix, and \(A x=0\) has only the zero solution, then \(\operatorname{nullity}(A)=\)
Select one:
ค. 0
(0) b. 3
\(\times\)
c. 2
od. 1

The correct answer is: 0

Question 10
Incorrect
Mark 0.00 out of 1.00

If \(A\) is a nonzero \(4 \times 2\)-matrix and \(A x=0\) has infinitely many solutions, then \(\operatorname{rank}(A)=\) Select one:
a. 4
(o) b. 2
\(\times\)
c. 1
od. 3

The correct answer is: 1

Question 11
If \(A\) is an \(n \times n\) singular matrix, then
Correct
Mark 1.00 out
of 1.00
Select one:
a. The rows of \(A\) are linearly independent
b. \(N(A)=\{0\}\)
- c. The columns of \(A\) are linearly dependent
d. \(\operatorname{rank}(A)=n\)

The correct answer is: The columns of \(A\) are linearly dependent

Question 12
Correct
Mark 1.00 out of 1.00

The vectors \(\left\{x^{2}+2 x+1, x-1, x^{2}+x+1\right\}\) form a basis for \(P_{3}\).
Select one:
a. False
© b. True \(\vee\)

The correct answer is: True

Question 13
Incorrect
Mark 0.00 out of 1.00

Let \(S=\left\{\left(\begin{array}{c}a+b+2 c \\ a+2 c \\ a+b+2 c\end{array}\right): a, b \in \mathbb{R}\right\}\). Then dimension of \(S\) equals
Select one:
a. 1
(o) b. 3
\(\times\)
c. 2
d. 0

The correct answer is: 2

Question 14
Correct
Mark 1.00 out of 1.00
dimension of the subspace \(S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right), A_{2}\left(\begin{array}{cc}0 & -1 \\ 1 & 3\end{array}\right), A_{3}=\left(\begin{array}{cc}-3 & -8 \\ -1 & 6\end{array}\right)\right\}\) is Select one:
a. 3
(o) b. 2
c. 0
d. 1

The correct answer is: 2

Question 15
Correct
Mark 1.00 out of 1.00

If \(A\) is an \(n \times n\)-matrix and for each \(b \in \mathbb{R}^{n}\) the system \(A x=b\) has a unique solution, then Select one:
a. \(A\) is singular
(b. b. \(A\) is nonsingular
c. \(\operatorname{rank}(A)=n-1\)
d. \(\operatorname{nullity}(A)=1\)

The correct answer is: \(A\) is nonsingular

Question 16
Let \(A\) be a \(4 \times 3\) matrix, and nullity \((A)=0\), then
Correct
Mark 1.00 out of 1.00

Select one:
a. The rows of \(A\) are linearly independent
b. the columns of \(A\) form a basis for \(\mathbb{R}^{4}\)
c. \(\operatorname{rank}(A)=1\)
( d. The columns of \(A\) are linearly independent

Question 17
Correct
Mark 1.00 out
of 1.00

Let \(A\) be a \(4 \times 6\) matrix, and nullity \((A)=2\), then the system \(A x=b\) has infinite number of solutions for every \(b \in \mathbb{R}^{4}\).

Select one:
© a. True \(\checkmark\)
b. False

\section*{The correct answer is: True}

Question 18
Correct
Mark 1.00 out of 1.00

Let \(V\) be a vector space, \(v_{1}, v_{2}, \ldots v_{n} \in V\) be linearly independent, and \(v \in V\), then the vectors \(v_{1}, v_{2}, \ldots v_{n}, v\) are linearly independent.

Select one:
© a. Falseb. True

The correct answer is: False

Question 19
Let \(v_{1}, v_{2}\) be linearly dependent in a vector space \(V, V=\operatorname{Span}\left(v_{1}, v_{2}\right)\), then \(\operatorname{dim}(V)=2\)
Correct
Mark 1.00 out of 1.00

Select one:
- a. Trueb. False

The correct answer is: False
Question 20
Correct
Mark 1.00 out of 1.00
\(\operatorname{dim}\left(\operatorname{span}\left(x^{2}, 3+x^{2}, x^{2}+1\right)\right)\) is
Select one:
- a. 3
-b. 0
(-) c. 2
\(\checkmark\)
d. 1

The correct answer is: 2

Question 21
Incorrect
Mark 0.00 out of 1.00

If \(T_{n \times n}\) is a transition matrix between two bases for a vector space \(V\), \(\operatorname{dim}(V)=n>0\), then
Select one:
( a. \(\operatorname{rank}(T)=1\)
\(\times\)
b. \(\operatorname{nullity}(T)=n\)
c. \(T\) is nonsingular
d. \(\operatorname{det}(T)=1\)

Question 22
Incorrect
Mark 0.00 out of 1.00

If A is a \(3 \times 2\) matrix, then
Select one:
a. The columns of \(A\) are linearly independent
© b. The columns of \(A\) are linearly dependent
\(\times\)
c. The rows of \(A\) are linearly dependent
d. \(\operatorname{Rank}(A)=3\)

The correct answer is: The rows of \(A\) are linearly dependent

Question 23
Correct
Mark 1.00 out of 1.00 \(U=\left[u_{1}=\binom{2}{3}, u_{2}=\binom{1}{2}\right]\) is

The transition matrix from the standard basis \(S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]\) to the ordered basis

Select one:
a. \(T=\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)\)
- b. \(T=\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)\)
c. \(T=\left(\begin{array}{cc}-2 & 1 \\ 3 & -2\end{array}\right)\)
d. \(T=\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right)\)

The correct answer is: \(T=\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)\)

Let \(E=\left[2+x, 1-x, x^{2}+1\right]\) be an ordered basis for \(P_{3}\). If \(p(x)=2 x^{2}+6 x+5\), then the coordinate vector of \(p(x)\) with respect to \(E\) is

Select one:
a. \(\left(\begin{array}{c}2 \\ -3 \\ 3\end{array}\right)\)
- b. \(\left(\begin{array}{c}3 \\ -3 \\ 2\end{array}\right)\)
c. \(\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)\)
d. \(\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{c}3 \\ -3 \\ 2\end{array}\right)\)

Question 25
Correct
Mark 1.00 out
of 1.00

Let \(A\) be a \(3 \times 5\) matrix, and nullity \((A)=3\), then the rows of \(A\) are linearly independent
Select one:
- a. False \(\downarrow\)b. True

The correct answer is: False

Question 26
Correct
Mark 1.00 out of 1.00
if \(\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}\) is a spanning set for \(\mathbb{R}^{3 \times 2}\), then
Select one:
a. \(k=6\)
b. \(k>6\)
(o) c. \(k \geq 6\)
\(\checkmark\)
d. \(k \leq 6\)

The correct answer is: \(k \geq 6\)

\section*{Question 27}

Correct
Mark 1.00 out of 1.00

If \(A=\left(\begin{array}{cccc}1 & 2 & -1 & 0 \\ -1 & -2 & 2 & 0 \\ 2 & 4 & 0 & 0\end{array}\right)\), then \(\operatorname{rank}(A)=3\).
Select one:
- a. True
© b. False

\section*{The correct answer is: False}

Question 28
Incorrect
Mark 0.00 out of 1.00

If \(A\) is an \(m \times n\)-matrix, \(m \neq n\), then either the rows or the columns of \(A\) are linearly independent Select one:
a. False
( b. True \(\boldsymbol{x}\)

The correct answer is: False

Question 29
Correct
Mark 1.00 out of 1.00

Let \(S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x=-y\right\}\), then \(S\) is a subspace of \(\mathbb{R}^{2}\).
Select one:
- a. True
b. False

The correct answer is: True

Question 30

\section*{Correct}

Mark 1.00 out
of 1.00

The coordinate vector of \(8+6 x\) with respect to the basis \([2,2 x]\) is \((4,3)^{T}\)
Select one:a. Falseb. True

\section*{The correct answer is: True}

Question 31
If \(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\) is a basis for a vector space \(V\), then the set \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is

\section*{Correct}

Mark 1.00 out
of 1.00
Select one:
a. linearly independent and a spanning set for \(V\).
(0) b. linearly independent and not a spanning set for \(V\).
c. linearly dependent and not a spanning set for \(V\).
d. linearly dependent and a spanning set

The correct answer is: linearly independent and not a spanning set for \(V\).

\section*{Question 32}

Correct
Mark 1.00 out of 1.00

The nullity of \(A=\left(\begin{array}{ccccc}1 & 4 & 1 & 2 & 1 \\ 0 & 6 & -1 & 2 & -1 \\ 3 & 10 & 0 & 4 & 1\end{array}\right)\) is
Select one:
(a) 2
b. 1
c. 3
-d. 4

The correct answer is: 2

Started on Sunday, 10 January 2021, 9:46 AM
State Finished
Completed on Sunday, 10 January 2021, 11:01 AM
Time taken 1 hour 14 mins
Grade 23.00 out of 32.00 ( \(\mathbf{7 2 \%}\) )

\section*{Question 1}

Correct
Mark 1.00 out of 1.00

\section*{Question 2}

Correct
Mark 1.00 out
of 1.00

If \(A\) is an \(n \times n\) singular matrix, then
Select one:
- a. The columns of \(A\) are linearly dependent
b. \(N(A)=\{0\}\)
c. \(\operatorname{rank}(A)=n\)
d. The rows of \(A\) are linearly independent

The correct answer is: The columns of \(A\) are linearly dependent

The rank of \(A=\left(\begin{array}{ccccc}1 & 4 & 1 & 2 & 1 \\ 0 & 6 & -1 & 2 & -1 \\ 3 & 10 & 0 & 4 & 1\end{array}\right)\) is
Select one:
a. 1
b. 2
C. 4
( d. 3
\(\checkmark\)

The correct answer is: 3

Question 3
Incorrect
Mark 0.00 out of 1.00

If \(A\) is an \(m \times n\)-matrix, and columns of \(A\) are linearly independent, then

Select one:
a. \(n \leq m\)
b. \(m=n\)
() c. \(m \leq n\)
\(\times\)
d. \(m=n+1\)

The correct answer is: \(n \leq m\)

Question 4
Correct
Mark 1.00 out of 1.00

Question 5
Correct
Mark 1.00 out of 1.00 \(\qquad\)
If \(v_{1}, v_{2}, \cdots, v_{n} \in V, \operatorname{dim}(V)=n\) and \(v_{1}, v_{2}, \cdots, v_{n}\) are linearly independent, then Span \(\left(v_{1}, v_{2}, \cdots, v_{n}\right)=V\),

Select one:
a. False
© b. True \(\downarrow\)

The correct answer is: True

If \(A\) is a \(4 \times 3\) matrix such that \(N(A)=\{0\}\), and \(b\) can be written as a linear combination of the columns of \(A\), then

Select one:
( a. The system \(A x=b\) has exactly one solution
b. The system \(A x=b\) has exactly two solutions
c. The system \(A x=b\) is inconsistent
d. The system \(A x=b\) has infinitely many solutions

The correct answer is: The system \(A x=b\) has exactly one solution

Question 6
Correct
Mark 1.00 out of 1.00

Let \(A\) be a \(3 \times 5\) matrix, and nullity \((A)=2\), then the columns of \(A\) form a aspanning set for \(\mathbb{R}^{3}\) Select one:
a. False
© b. True

The correct answer is: True

Question 7
Incorrect
Mark 0.00 out of 1.00

Let \(V\) be a vector space, \(v_{1}, v_{2}, \ldots v_{n} \in V\) be linearly independent, and \(v \in V\), then the vectors \(v_{1}, v_{2}, \ldots v_{n}, v\) are linearly independent.

Select one:
(a) arue \(\mathbf{x}\)b. False

The correct answer is: False

Question 8
Correct
Mark 1.00 out of 1.00

If \(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\) is a basis for a vector space \(V\), then the set \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is
Select one:
a. linearly dependent and a spanning set
- b. linearly independent and a spanning set for \(V\).
c. linearly dependent and not a spanning set for \(V\).
© d. linearly independent and not a spanning set for \(V\).

The correct answer is: linearly independent and not a spanning set for \(V\).

Question 9
Correct
Mark 1.00 out of 1.00

Let \(S=\left\{\left(\begin{array}{c}a+b+2 c \\ a+2 c \\ a+b+2 c\end{array}\right): a, b \in \mathbb{R}\right\}\). Then dimension of \(S\) equals
Select one:
a. 3
-b. 0
c. 1
( d. 2

The correct answer is: \(\mathbf{2}\)

\section*{Question 10}

Correct
Mark 1.00 out of 1.00

If \(A\) is an \(m \times n\)-matrix, and columns of \(A\) form a spanning set for \(\mathbb{R}^{m}\), then
Select one:
a. \(n \leq m\)
b. \(m=n+1\)
© c. \(m \leq n\)
d. \(m=n\)

The correct answer is: \(m \leq n\)

\section*{Question 11}

Correct
Mark 1.00 out of 1.00

If \(T_{n \times n}\) is a transition matrix between two bases for a vector space \(V, \operatorname{dim}(V)=n>0\), then Select one:
a. \(\operatorname{nullity}(T)=n\)b. \(T\) is nonsingular
c. \(\operatorname{rank}(T)=1\)
d. \(\operatorname{det}(T)=1\)

Question 12
Correct
Mark 1.00 out of 1.00

If the columns of \(A_{n \times n}\) are linearly independent and \(b \in \mathbb{R}^{n}\), then the system \(A x=b\) has
Select one:
- a. exactly one solution
b. infinitely many solutionsc. no solutiond. exactly 2 solutions

The correct answer is: exactly one solution

Question 13
Incorrect
Mark 0.00 out
of 1.00

Let \(S=\{f \in C[-1,1]: f(-1)=f(1)\}\), then \(S\) is a subspace of \(C[-1,1]\).
Select one:
- a. False \(\boldsymbol{x}\)
b. True

The correct answer is: True

Question 14
Correct
Mark 1.00 out of 1.00

Question 15
Correct
Mark 1.00 out of 1.00

If \(A\) is a \(3 \times 5\)-matrix, rows of \(A\) are linearly independent, then
Select one:
a. \(\operatorname{rank}(A)=\operatorname{nullity}(A)+3\)b. \(\operatorname{rank}(A)=\operatorname{nullity}(A)+2\)
© c. \(\operatorname{rank}(A)=\operatorname{nullity}(A)+1\)
d. \(\operatorname{rank}(A)=\operatorname{nullity}(A)\)

The correct answer is: \(\operatorname{rank}(A)=\operatorname{nullity}(A)+1\)

If \(A=\left(\begin{array}{cccc}1 & -2 & -1 & 0 \\ -1 & 2 & 2 & 0 \\ 2 & -4 & 0 & 0\end{array}\right)\), then \(\operatorname{rank}(A)=3\).
Select one:
a. Trueb. False

The correct answer is: False

Question 16
Incorrect
Mark 0.00 out of 1.00

Let \(S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x+y=0\right\}\), then \(S\) is a subspace of \(\mathbb{R}^{2}\).
Select one:
© a. False \(\boldsymbol{x}\)
ob. True

The correct answer is: True

Question 17
Incorrect
Mark 0.00 out of 1.00

Question 18
Correct
Mark 1.00 out
of 1.00

The vectors \(\left\{x-1,2 x^{2}+x+5, x^{2}+x+2\right\}\) form a basis for \(P_{3}\).
Select one:
© a. True \(\boldsymbol{x}\)
b. False

The correct answer is: False

Every spanning set for \(\mathbb{R}^{3}\) contains at least 3 vectors.
Select one:
a. False
© b. True \(\downarrow\)

The correct answer is: True

\section*{Question 19}

Correct
Mark 1.00 out of 1.00

Let \(V\) be a vector space of dimension 4 and \(W=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}\) a set of nonzero vectors of \(V\), then

Select one:
a. \(W\) is linearly independent
b. \(W\) is a spanning se \(\dagger\)
c. \(W\) is a basis
© d. \(W\) is linearly dependent

The correct answer is: \(W\) is linearly dependent

Question 20
Incorrect
Mark 0.00 out of 1.00

Let \(E=\left[2+x, 1-x, x^{2}+1\right]\) be an ordered basis for \(P_{3}\). If \(p(x)=2 x^{2}+6 x+5\), then the coordinate vector of \(p(x)\) with respect to \(E\) is

Select one:
a. \(\left(\begin{array}{c}3 \\ -3 \\ 2\end{array}\right)\)
(ob. \(\left(\begin{array}{c}2 \\ -3 \\ 3\end{array}\right)\)
\(\times\)
c. \(\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)\)
d. \(\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{c}3 \\ -3 \\ 2\end{array}\right)\)

Question 21
Incorrect
Mark 0.00 out of 1.00

The coordinate vector of \(8+6 x\) with respect to the basis \([2,2 x]\) is \((4,3)^{T}\)

Select one:
- a. True
- b. False \(\mathbf{x}\)

The correct answer is: True

Question 22
Incorrect Mark 0.00 out of 1.00

Let \(A\) be a \(5 \times 4\) matrix, and \(\operatorname{rank}(A)=4\)
Select one:
- a. \(A\) has a row of zeros
\(\times\)
b. The columns of \(A\) are linearly independent
c. The rows of \(A\) are linearly independent
d. \(\operatorname{nullity}(A)=1\)

The correct answer is: The columns of \(A\) are linearly independent

Question 23
Correct
Mark 1.00 out of 1.00

The vectors \(\left\{(1,-1,1)^{T},(1,-3,2)^{T},(1,-2,0)^{T}\right\}\) form a basis for \(\mathbb{R}^{3}\).
Select one:
a. False
© b. True

The correct answer is: True

Question 24
Correct
Mark 1.00 out of 1.00
dimension of the subspace \(S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right), A_{2}\left(\begin{array}{cc}3 & -1 \\ 1 & 0\end{array}\right), A_{3}=\left(\begin{array}{cc}6 & -8 \\ -1 & -3\end{array}\right)\right\}\) is
Select one:
a. 3
b. 1
© c. 2
- d. 0

The correct answer is: 2

Question 25
Correct
Mark 1.00 out of 1.00

Question 26
Correct
Mark 1.00 out of 1.00

If A is a \(4 \times 6\) matrix, then nullity of \(A \geq 2\).

Select one:
a. False
© b. True

The correct answer is: True

If \(v_{1}, v_{2}, \cdots, v_{k}\) are vectors in a vector space \(V\), and \(\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k}\right)=\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k-1}\right)\), then \(v_{k}\) can be written as alinear combination of \(v_{1}, v_{2}, \cdots, v_{k-1}\)

Select one:
a. False
© b. True

The correct answer is: True

Question 27
Incorrect
Mark 0.00 out of 1.00

Let \(E=[3-x, 2+x], F=[1, x]\) be ordered bases for \(P_{2}\). The transition matrix from \(E\) to \(F\) is
Select one:
a. \(\left(\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right)\)
b. \(\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)\)
(-) c. \(\left(\begin{array}{cc}-1 & 1 \\ 2 & 3\end{array}\right)\)
\(\times\)
d. \(\left(\begin{array}{cc}-1 & 1 \\ 3 & 2\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)\)

Question 28
Correct
Mark 1.00 out of 1.00

If \(A\) is a nonzero \(4 \times 2\)-matrix and \(A x=0\) has infinitely many solutions, then \(\operatorname{rank}(A)=\)
Select one:
© a. 1
b. 4
c. 3
-d. 2

The correct answer is: 1

Question 29
Correct
Mark 1.00 out of 1.00
- 1.00

The transition matrix from the standard basis \(S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]\) to the ordered basis \(U=\left[u_{1}=\binom{1}{2}, u_{2}=\binom{3}{7}\right]\) is

Select one:
a. \(T=\left(\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right)\)
b. \(T=\left(\begin{array}{cc}1 & -3 \\ -2 & 7\end{array}\right)\)
© c. \(T=\left(\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right)\)
d. \(T=\left(\begin{array}{cc}-7 & 3 \\ 2 & -1\end{array}\right)\)

The correct answer is: \(T=\left(\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right)\)

Question 30
Correct
Mark 1.00 out of 1.00

Let \(S=\left\{p(x)=a x^{2}+b x+c \in P_{3}: \int_{0}^{1} p(x) d x=0\right\}\). The dimension of \(S\) is.
Select one:
a. 4
b. 3
©. 1
- d. 2

The correct answer is: 2

Question 31
Correct
Mark 1.00 out
of 1.00

Let \(A\) be a \(4 \times 3\) matrix, and \(\operatorname{nullity}(A)=0\), then
Select one:
a. the columns of \(A\) form a basis for \(\mathbb{R}^{4}\)
b. The rows of \(A\) are linearly independent
© c. The columns of \(A\) are linearly independent
d. \(\operatorname{rank}(A)=1\)

The correct answer is: The columns of \(A\) are linearly independent

\section*{Question 32}

Correct
Mark 1.00 out
of 1.00
Let \(V\) be a vector space, \(v_{1}, v_{2}, v_{3} \in V\) such that \(v_{1}, v_{2}\) are linearly independent, \(v_{2}, v_{3}\) are linearly independent, and \(v_{1}, v_{3}\) are linearly independent, then \(v_{1}, v_{2}, v_{3}\) are linearly independent.

Select one:
- a. False \(\downarrow\)
ob. True

The correct answer is: False
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-5 / General / Quiz 2

```
\begin{tabular}{rl} 
Started on & Tuesday, 15 December 2020, 8:30 AM \\
State & Finished \\
Completed on & Tuesday, 15 December 2020, 8:43 AM \\
Time taken & 12 mins 54 secs \\
Grade & \(\mathbf{6 . 0 0}\) out of \(6.00(\mathbf{1 0 0 \%})\)
\end{tabular}

Question 1
Correct
Mark 1.00 out of
1.00

If \(f_{1}, f_{2}, \cdots, f_{n} \in C^{n-1}[a, b]\) and \(W\left[f_{1}, f_{2}, \cdots, f_{n}\right](x) \neq 0\) for all \(x \in[a, b]\), then \(f_{1}, f_{2}, \cdots, f_{n}\) are
Select one:
a. form a spanning set for \(C^{n-1}[a, b]\)
- b. linearly independent. \(\downarrow\)
c. linearly dependent.

The correct answer is: linearly independent.

Question 2
Correct
Mark 1.00 out of
1.00 \(\qquad\)
The vectors \(\left\{(1,-1,1)^{T},(1,-3,2)^{T},(1,-2,0)^{T}\right\}\) in \(\mathbb{R}^{3}\) are
Select one:
a. linearly dependent
© b. linearly independent \(\checkmark\)

The correct answer is: linearly independent
\begin{tabular}{l|l}
\(\begin{array}{l}\text { Question } 3 \\
\text { Correct } \\
\text { Mark } 1.00 \text { out of }\end{array} \quad\) The set \(S=\left\{\left(\begin{array}{c}x \\
y \\
x+2 z+2 z\end{array}\right): x, y, z \in \mathbb{R}\right\}\) is a subspace of \(\mathbb{R}^{3}\)
\end{tabular}
1.00

Select one:
- a. True \(\checkmark\)
b. False

The correct answer is: True

Question 4
Correct
Mark 1.00 out of 1.00

Let \(S=\left\{\left(\begin{array}{c}a+b \\ a \\ a+b\end{array}\right): a, b \in \mathbb{R}\right\}\). Then dimension of \(S\) equals

Select one:
- a. 2
b. 3
c. 1
d. 0
```

Question 5
Correct
Mark 1.00 out of
1.00

```
If \(v_{1}, v_{2}, \cdots, v_{n}\) are linearly independent vectors in a vector space \(V\), and \(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=0\), then
\(c_{1}, c_{2}, \cdots, c_{n}\) are all zero scalars.

Select one:
- a. True \(\checkmark\)
b. False

The correct answer is: True
Question 6
Correct
Mark 1.00 out of
1.00

If \(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\) forms a spanning set for a vector space \(V, v_{4}\) can be written as a linear combination of \(v_{1}, v_{2}, v_{3}\), then

Select one:
a. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) are linearly dependent in \(V\).
b. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) are linearly independent in \(V\).
- c. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is a spanning set of \(V\).
d. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is not a spanning set of \(V\).

The correct answer is: \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is a spanning set of \(V\).

Started on Wednesday, 23 December 2020, 10:01 AM State Finished
Completed on Wednesday, 23 December 2020, 10:20 AM
Time taken 18 mins 19 secs
Marks 8.00/18.00
Grade 4.44 out of 10.00 ( \(44 \%\) )

Question 1
Incorrect
Mark 0.00 out of 2.00
\(\operatorname{dim}\left(\operatorname{span}\left\{1-x, x^{2}, 3+x^{2}, 1+x^{2}\right\}\right)\) equals
Select one:
- a. 0
b. 3
C. 1
( d. 2
\(\times\)

The correct answer is: 3

\section*{Question 2}

One of the following is not a basis for \(P_{3}\) :
Correct

Mark 2.00 out of 2.00

Select one:
a. \(\left\{1,2 x, x^{2}-x\right\}\)
b. \(\left\{x, x^{2}+3, x^{2}-5\right\}\)
c. \(\left\{x-1, x^{2}+1, x^{2}-1\right\}\)
(o) d. \(\left\{x^{2}+1, x^{2}-1,2\right\}\)
\(\checkmark\)

The correct answer is: \(\left\{x^{2}+1, x^{2}-1,2\right\}\)

\section*{Question 3}

Correct
Mark 2.00 out of 2.00

If \(V\) is a vector space with \(\operatorname{dim}(V)=n\), then
Select one:
a. Any set containing less than \(n\) vectors must be linearly independent.
© b. Any \(n\) linearly independent vectors in \(V\) span \(V\).
c. Any spanning set for \(V\) must contain at most \(n\) vectors.

The correct answer is: Any \(n\) linearly independent vectors in \(V\) span \(V\).

Question 4 Incorrect Mark 0.00 out of 2.00

The set of vectors \(\left\{(1, a)^{T},(b, 1)^{T}\right\}\) is a spanning set for \(R^{2}\) if
Select one:
(o) a. \(a \neq b\)
\(\times\)
b. \(a b \neq 1\)
c. \(a b=1\)
d. \(a \neq 1\) and \(b \neq 1\)

The correct answer is: \(a b \neq 1\)

Question 5
Incorrect
Mark 0.00 out of 2.00

Suppose that a vector space \(V\) contains \(n\) linearly independent vectors, then
Select one:
a. Any \(n\) vectors in \(V\) are linearly independentb. If a set \(S\) spans \(V\) then \(S\) must contain at most \(n\) vectors
© c. Any set containing more than \(n\) vectors is linearly dependent \(\times\)
d. If a set \(S\) spans \(V\) then \(S\) must contain at least \(n\) vectors

The correct answer is: If a set \(S\) spans \(V\) then \(S\) must contain at least \(n\) vectors

Question 6
Correct
Mark 2.00 out of 2.00

Let \(f, g, h \in C^{2}[a, b]\), if \(W[f, g, h](x)=0\) for all \(x \in[a, b]\), then \(f, g, h\) are linearly dependent in \(C[a, b]\) Select one:
- a. True
© b. False

The correct answer is: False

Question 7
Complete Not graded

Let \(V\) is a vector space with \(\operatorname{dim}(V)=4\), if \(v_{1}, v_{2}, v_{3}, v_{4} \in V\), then span \(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=V\).
Select one:
a. False
(o) b. True

The correct answer is: False

\section*{Question 8}

Incorrect
Mark 0.00 out of 2.00

The vectors \(e^{x}, x e^{x}, x\) are linearly independent in \(C[0,1]\).
Select one:
- a. True
© b. False \(\boldsymbol{x}\)

Question 9
Correct
Mark 2.00 out of 2.00

If \(V\) is a vector space with \(\operatorname{dim}(V)=n\), then any \(n+1\) vectors in \(V\) are linearly dependent.
Select one:
© a. Trueb. False

The correct answer is: True

Question 10 Incorrect Mark 0.00 out of 2.00

If \(\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}\) are linearly independent in a vector space \(V\), then \(V\) is finite-dimensional. Select one:
© a. True \(\boldsymbol{x}\)
b. False

The correct answer is: False

If \(x_{1}\) and \(x_{2}\) are linearly independent in \(R^{3}\), then \(\exists x \in R^{3}\) such that span \(\left\{x_{1}, x_{2}, x\right\}=R^{3}\). Select one:
- a. Trueb. False

The correct answer is: True
```

 Started on Tuesday, 24 November 2020, 3:50 PM
 State Finished
 Completed on Tuesday, 24 November 2020, 4:53 PM
 Time taken 1 hour 2 mins
 Grade 28.00 out of 30.00 (93%)
    ```

Question 1
Correct
Mark 1.00 out of
1.00
```

An $n \times n$ matrix A is invertible if and only if
Select one:
a. $|A|=0$
b. $A x=0$ has a nonzero solution
c. $A=I$

- d. there exists a matrix B such that $A B=I$

```

The correct answer is: there exists a matrix \(B\) such that \(A B=I\)

Question 2
Correct
Mark 1.00 out of
1.00
\((0,0,0)^{T}\) is a linear combination of the vectors \((1,2,3)^{T},(1,4,1)^{T},(2,3,1)^{T}\)

Select one:
- a. True \(\sqrt{ }\)
b. False

The correct answer is: True
Question 3
Correct
Mark 1.00 out of
1.00

In the \(n \times n\)-linear system \(A x=b\), if \(A\) is singular and \(b\) is a linear combination of the columns of \(A\) then the system has

Select one:
a. exactly two solutions
b. no solution
c. a unique solution
- d. infinitely many solutions \(\downarrow\)

The correct answer is: infinitely many solutions
\begin{tabular}{|c|c|}
\hline Question 4 & If \(y, z\) are solutions to \(A x=b\), then \(y+z\) is a solution of the system \(A x=0\). \\
\hline \multicolumn{2}{|l|}{Correct} \\
\hline Mark 1.00 out of & Select one: \\
\hline 1.00 & a. True \\
\hline & ( b. False \(\sqrt{ }\) \\
\hline
\end{tabular}

The correct answer is: False

Question 5
Incorrect
Mark 0.00 out of
1.00 \(\qquad\)

Question 6
Correct
Mark 1.00 out of
1.00 \(\qquad\)

Question 7
Correct
Mark 1.00 out of
1.00

Any two \(n \times n\)-singular matrices are row equivalent.

Select one:
a. False
(b) True x

\section*{The correct answer is: False}

If \(A\) is a \(4 \times 3\)-matrix, \(b \in \mathbb{R}^{4}\), and the system \(A x=b\) is consistent, then \(A x=b\) has a unique solution.

Select one:
a. True
(b. False \(\checkmark\)

The correct answer is: False

If \((A \mid b)=\left(\begin{array}{ccc|c}1 & 2 & -1 & 0 \\ 2 & 3 & 1 & -1 \\ 1 & 1 & \alpha & \beta\end{array}\right)\), then the system has only one solution if
Select one:
- a. \(\alpha \neq 2\) and \(\beta\) any number
b. \(\alpha \neq 2\) and \(\beta \neq-1\)
c. \(\alpha=2\) and \(\beta=-1\)
d. \(\alpha=2\) and \(\beta \neq-1\)

The correct answer is: \(\alpha \neq 2\) and \(\beta\) any number
\begin{tabular}{|l|}
\hline Question \(\mathbf{8}\) \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}

Question 9
Correct
Mark 1.00 out of 1.00

If \(A\) is a nonsingular \(3 \times 3\)-matrix, then the reduced row echelon form of \(A\) has no row of zeros.
Select one:
a. False
- b. True \(V\)

The correct answer is: True

If \(E\) is an elementary matrix then one of the following statements is not true

Select one:
a. \(E^{-1}\) is an elementary matrix.
b. \(E\) is nonsingular.
c. \(E^{T}\) is an elementary matrix.
- d. \(E+E^{T}\) is an elementary matrix. \(\checkmark\)
\begin{tabular}{l} 
Question 10 \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}

If \(A\) is a \(3 \times 3\) matrix with \(\operatorname{det}(A)=-2\). Then \(\operatorname{det}(\operatorname{adj}(A))=\)
Select one:
- a. 4.
b. -4 .
c. -8 .
d. 8 .

The correct answer is: 4 .

Question 11
Correct
Mark 1.00 out of
1.00

Question 12
Correct
Mark 1.00 out of
1.00

If \(A\) is singular and \(B\) is nonsingular \(n \times n\)-matrices, then \(A B\) is

Select one:
- a. singular \(\vee\)
b. may or may not be singular
c. nonsingular

The correct answer is: singular

If \((A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 1 & 1 & 2 & 5\end{array}\right)\), then the system \(A x=b\) is inconsistent
Select one:
- a. True \(\checkmark\)
b. False

The correct answer is: True

Question 13
Correct
Mark 1.00 out of
1.00

If \(A\) is a singular \(n \times n\)-matrix, \(b \in \mathbb{R}^{n}\), then the system \(A x=b\)
Select one:
- a. has either no solution or an infinite number of solutions \(\downarrow\)
b. has infinitely many solutions.
- c. has a unique solution
d. is inconsistent

The correct answer is: has either no solution or an infinite number of solutions

Question 14
Correct
Mark 1.00 out of
1.00

If \(A\) is symmetric and skew symmetric then \(A=0\). ( \(A\) is skew symmetric if \(A=-A^{T}\) ).

Select one:
- a. True \(\checkmark\)
b. False
\begin{tabular}{l|}
\hline Question 15 \\
Correct \\
Mark 1.00 out of \\
1.00
\end{tabular}
1.00

If \(A=L U\) is the \(L U\)-factorization of a matrix \(A\), and \(A\) is singular, then

Select one:
a. \(L\) and \(U\) are both singular
- b. \(U\) is singular and \(L\) is nonsigular
\(\checkmark\)
c. \(L\) and \(U\) are both nonsingular
d. \(L\) is singular and \(U\) is nonsigular

The correct answer is: \(U\) is singular and \(L\) is nonsigular
```

Question 16
Correct
Mark 1.00 out of
1.00
1.00

```
\(\square\)

Question 17
Correct
Mark 1.00 out of
1.00

Question 18
Correct
Mark 1.00 out of
1.00

If \(A\) and \(B\) are singular matrices, then \(A+B\) is also singular.

Select one:
- a. False \(\checkmark\)
b. True

The correct answer is: False

If \(A\) is a singular matrix, then \(A\) can be written as a product of elementary matrices.

Select one:
- a. False \(\checkmark\)
b. True

The correct answer is: False

Let \((1,2,0)^{T}\) and \((2,1,1)^{T}\) be the first two columns of a \(3 \times 3\) matrix \(A\) and \((1,1,1)^{T}\) be a solution of the system \(A x=(4,4,5)^{T}\). Then the third column of the matrix \(A\) is

Select one:
- a. \((1,1,4)^{T}\).
\(\checkmark\)
b. \((4,-1,1)^{T}\).
c. \((-1,-1,-4)^{T}\).
d. \((-1,-2,1)^{T}\).

The correct answer is: \((1,1,4)^{T}\).

Question 19
Correct
Mark 1.00 out of
1.00

Let \(A\) be a \(3 \times 4\) matrix which has a row of zeros, and let \(B\) be a \(4 \times 4\) matrix, then \(A B\) has a row of zeros.

Select one:
- a. True \(\downarrow\)
b. False

Let \(A\) be a \(4 \times 4\)-matrix such that \(A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\), then
Select one:
a. There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\)
b. \(A\) is the zero matrix
c. The system \(A x=0\) has only one solution
- d. \(A\) is singular. \(\checkmark\)

The correct answer is: \(A\) is singular.
```

Question 21
Correct
Mark 1.00 out of
1.00

```
estion 22
Correct
Mark 1.00 out of
1.00

Let \(A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & -1 & 3\end{array}\right)\),then \(\operatorname{det}(A)=\)
Select one:
(-) a. 2
b. 3
c. 5
- d. 0

The correct answer is: 2
```

Question 23
Correct
Mark 1.00 out of
1.00

```

If the row echelon form of \((A \mid b)\) is \(\left(\begin{array}{cccc:c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)\) then the general form of the solutions is given by

Select one:
a. \(x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)\)
b. \(x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)\)
© c. \(x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)\)
d. \(x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)\)

Question 24
Correct
Mark 1.00 out of
1.00

If \(A, B\) are \(n \times n\)-skew-symmetric matrices \(\left(A\right.\) is skew symmetric if \(\left.A^{T}=-A\right)\), then \(A B+B A\) is symmetric Select one:
- a. True \(\vee\)
b. False

The correct answer is: True

Question 25
Correct
Mark 1.00 out of 1.00

Let \(A\) be a \(4 \times 3\)-matrix with \(a_{2}-a_{3}=0\). If \(b=a_{1}+a_{2}+a_{3}\), where \(a_{j}\) is the \(j\) th column of \(A\), then the system \(A x=b\) will have infinitely many solutions.

\section*{Select one:}
a. False
- b. True \(\checkmark\)

The correct answer is: True
Question 26
Correct
Mark 1.00 out of
1.00

If \(A\) is a \(3 \times 3\)-matrix and the system \(A x=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)\) has a unique solution, then the system \(A x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\)

Select one:
a. is inconsistent
© b. has only the zero solution. \(\downarrow\)
c. has infinitely many solutions

The correct answer is: has only the zero solution.
Question 27
Incorrect
Mark 0.00 out of
1.00
1.00

If \(A B=0\), where \(A\) and \(B\) are \(n \times n\) nonzero matrices. Then
Select one:
© a. either \(A\) or \(B\) is singular \(\times\)
b. both \(A, B\) are singular.
c. both \(A, B\) are nonsingular.
d. either \(A=0\) or \(B=0\)

The correct answer is: both \(A, B\) are singular.
\begin{tabular}{l} 
Question 28 \\
Correct \\
\hline Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}
1.00

If \(x_{0}\) is a solution of the nonhomogeneous system \(A x=b\) and \(x_{1}\) is a solution of the homogeneous system \(A x=0\). Then \(x_{1}+x_{0}\) is a solution of

Select one:
a. the system \(A x=0\)
b. the system \(A x=2 b\)
c. the system \(A x=A b\)
( d. the system \(A x=b\)
\(\checkmark\)

The correct answer is: the system \(A x=b\)

Question 29
Correct
Mark 1.00 out of
1.00

If \(A\) is a nonsingular \(n \times n\) matrix, \(b \in \mathbb{R}^{n}\), then

Select one:
a. The system \(A x=b\) is inconsistent
b. The system \(A x=b\) has only two solutions
© c. The system \(A x=b\) has a unique solution
d. The system \(A x=b\) has infinitely many solutions

The correct answer is: The system \(A x=b\) has a unique solution
```

Question 30
Correct
Mark 1.00 out of
1.00
The adjoint of the matrix }($$
\begin{array}{cc}{-1}&{2}\\{1}&{3}\end{array}
$$)\mathrm{ is
Select one:
a. $\left(\begin{array}{cc}-1 & 1 \\ 2 & -3\end{array}\right)$
b. $\left(\begin{array}{cc}1 & -2 \\ -1 & -3\end{array}\right)$
(.) c. $\left(\begin{array}{cc}3 & -2 \\ -1 & -1\end{array}\right)$
d. $\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right)$
The correct answer is: $\left(\begin{array}{cc}3 & -2 \\ -1 & -1\end{array}\right)$

```

Jump to..

Data retention summary.
Switch to the standard theme
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta / General / First exam

```
\begin{tabular}{rl} 
Started on & Tuesday, 24 November 2020, 3:51 PM \\
State & Finished \\
Completed on & Tuesday, 24 November 2020, 4:48 PM \\
Time taken & 57 mins 9 secs \\
Grade & 28.00 out of \(30.00(93 \%)\)
\end{tabular}

Question 1
Correct
Mark 1.00 out of
1.00

Let \(A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & 4 & 3\end{array}\right)\),then \(\operatorname{det}(A)=\)
Select one:
a. 0
b. 9
c. 5
- d. 7
\(\checkmark\)

The correct answer is: 7

Question 2
Correct
Mark 1.00 out of
1.00

If \(A\) is a \(2 \times 3\)-matrix, and \(b=a_{2}\) (second column of \(A\) ), then a solution to the system \(A x=b\) is

Select one:
a. \(x=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)\)
b. \(x=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\)
с. \(x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)\)
- d. \(x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\)
```

Question 3
Correct
Mark 1.00 out of
1.00
If }A\mathrm{ is a 2 }\times2\mathrm{ matrix with }\operatorname{det}(A)=-2\mathrm{ . Then }\operatorname{det}(\operatorname{adj}(A))
Select one:
a.2.
(.) b. -2.
c. -4.
d. 4.
The correct answer is: -2.

```
```

Question 4
If }A,B,C\mathrm{ are }n\timesn\mathrm{ nonsingular matrices, then }\mp@subsup{A}{}{2}-\mp@subsup{B}{}{2}=(A+B)(A-B
Correct
Mark 1.00 out of
1.00
Select one:

- a. False v
b. True

```

The correct answer is: False
```

Question 5
If A is a singular matrix, then A can be written as a product of elementary matrices.
Correct
Mark 1.00 out of
1.00

- a. False \checkmark
b. True

```

The correct answer is: False


Mark 1.00 out of
1.00

Select one:
a. \(\left(\begin{array}{cc}5 & -1 \\ 2 & 6\end{array}\right)\)
- b. \(\left(\begin{array}{cc}6 & -2 \\ 1 & 5\end{array}\right)\)
c. \(\left(\begin{array}{cc}-5 & -1 \\ 2 & -6\end{array}\right)\)
d. \(\left(\begin{array}{cc}-6 & 2 \\ -1 & -5\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{cc}6 & -2 \\ 1 & 5\end{array}\right)\)
```

Question }
Correct
Mark 1.00 out of
1.00

```

If \(A\) and \(B\) are \(n \times n\) matrices such that \(A x \neq B x\) for all nonzero \(x \in \mathbb{R}^{n}\). Then
Select one:
a. \(A\) and \(B\) are singular.
b. \(A-B\) is singular.
c. \(A\) and \(B\) are nonsingular.
© d. \(A-B\) is nonsingular.
\(\checkmark\)

The correct answer is: \(A-B\) is nonsingular.
```

Question 8
Incorrect
Mark 0.00 out of
1.00
-
(b) True \mathbf{x}

```

The correct answer is: False

Question 9
Correct
Mark 1.00 out of
1.00

Let \(A\) be a \(4 \times 4\)-matrix such that \(A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\), then
Select one:
a. There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\)
b. The system \(A x=0\) has only one solution
(-) c. \(A\) is singular.
d. \(A\) is the zero matrix

The correct answer is: \(A\) is singular.

Question 10
Correct
Mark 1.00 out of
1.00

If \(A\) is symmetric and skew symmetric then \(A=0\). ( \(A\) is skew symmetric if \(A=-A^{T}\) ).
Select one:
a. False
© b. True \(\checkmark\)

The correct answer is: True

An \(n \times n\) matrix \(A\) is invertible if and only if

Select one:
- a. there exists a matrix \(B\) such that \(A B=I\)
b. \(A=I\)
c. \(|A|=0\)
d. \(A x=0\) has a nonzero solution

The correct answer is: there exists a matrix \(B\) such that \(A B=I\)
Question 12
Correct
Mark 1.00 out of
1.00

Question 13
Correct
Mark 1.00 out of
1.00

If \(A, B, C\) are \(n \times n\)-matrices with \(A\) nonsigular and \(A B=A C\), then \(B=C\)
Select one:
a. False
- b. True \(\checkmark\)

The correct answer is: True

In the square linear system \(A x=b\), if \(A\) is singular and \(b\) is not a linear combination of the columns of \(A\) then the system

Select one:
a. has a unique solution
b. has infinitely many solutions
c. can not tell
- d. has no solution \(\downarrow\)

\section*{The correct answer is: has no solution}
```

Question 14
Correct
Mark 1.00 out of
1.00

```

Any two \(n \times n\)-singular matrices are row equivalent.

Select one:
- a. False
b. True

The correct answer is: False

Question 15
Correct
Mark 1.00 out of
1.00

If \(A\) is a singular \(n \times n\)-matrix, \(b \in \mathbb{R}^{n}\), then the system \(A x=b\)

Select one:
a. is inconsistent
b. has a unique solution
- c. has either no solution or an infinite number of solutions
d. has infinitely many solutions.
```

Question }1
Correct
Mark 1.00 out of 1.00

```

Let \(A\) be a \(3 \times 4\) matrix which has a row of zeros, and let \(B\) be a \(4 \times 4\) matrix, then \(A B\) has a row of zeros.
Select one:
- a. True \(\sqrt{ }\)
b. False

The correct answer is: True
```

Question 17
Correct
Mark 1.00 out of
1.00

```

If \(E\) is an elementary matrix of type III, then \(E^{T}\) is

Select one:
a. an elementary matrix of type II
b. an elementary matrix of type I
- c. an elementary matrix of type III \(\downarrow\)
d. not an elementary matrix

The correct answer is: an elementary matrix of type III

Question 18
Correct
Mark 1.00 out of 1.00

If the row echelon form of \((A \mid b)\) is \(\left(\begin{array}{cccc:c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)\) then the general form of the solutions is given by
Select one:
a. \(x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)\)
b. \(x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)\)
© c. \(x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)\)
d. \(x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)\)

Question 19
Incorrect
Mark 0.00 out of
1.00

If \((A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 0 & 3 & 2 & 1\end{array}\right)\) is the augmented matrix of the system \(A x=b\) then the system has no solution

Select one:
- a. False \(\boldsymbol{x}\)
b. True

The correct answer is: True
Question 20
Correct
Mark 1.00 out of
1.00

If \((A \mid b)=\left(\begin{array}{ccc|c}1 & 2 & -1 & 0 \\ 2 & 3 & 1 & -1 \\ 1 & 1 & \alpha & \beta\end{array}\right)\), then the system is inconsistent if
Select one:
a. \(\alpha \neq 2\) and \(\beta \neq-1\)
b. \(\alpha \neq 2\) and \(\beta\) any number
c. \(\alpha=2\) and \(\beta=-1\)
(0) d. \(\alpha=2\) and \(\beta \neq-1\)

The correct answer is: \(\alpha=2\) and \(\beta \neq-1\)

Question 21
Correct
Mark 1.00 out of
1.00

Let \((1,2,0)^{T}\) and \((2,1,1)^{T}\) be the first two columns of a \(3 \times 3\) matrix \(A\) and \((1,1,1)^{T}\) be a solution of the system \(A x=(5,2,4)^{T}\). Then the third column of the matrix \(A\) is

Select one:
a. \((-2,1,-3)^{T}\).
b. \((1,-1,-4)^{T}\).
© c. \((2,-1,3)^{T}\).
\(\checkmark\)
d. \((1,-1,4)^{T}\).

The correct answer is: \((2,-1,3)^{T}\).

Question 22
Correct
Mark 1.00 out of 1.00

If \(A\) is a nonsingular \(n \times n\) matrix, then

\section*{Select one:}
( a. There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\).
b. \(\operatorname{det}(A)=1\)
c. There is a singular matrix \(C\) such that \(A=C I\).
d. The system \(A x=0\) has a nontrivial (nonzero) solution.

The correct answer is: There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\).
```

Question 23
Correct
Mark 1.00 out of
1.00

```
    If \(A\) is a symmetric \(n \times n\)-matrix and \(P\) any \(n \times n\)-matrix, then \(P A P^{T}\) is

Select one:
- a. symmetric \(\checkmark\)
b. not defined
c. singular
d. not symmetric

The correct answer is: symmetric
```

Question 24
Correct
Mark 1.00 out of
1.00
If A is an $n \times n$ matrix and the system $A x=b$ has infinitely many solutions, then
Select one:
a. A is symmetric
b. A has a row of zeros

- c. A singular
d. A is nonsingular

```

The correct answer is: \(A\) singular
```

Question 25
Correct
Mark 1.00 out of
1.00
If }A\mathrm{ is a 3 }\times3\mathrm{ matrix such that }\operatorname{det}(A)=2\mathrm{ , then det (3A)=6
Select one:
O}\mathrm{ a. False
b. True

```

The correct answer is: False

Question 26
Correct
Mark 1.00 out of
1.00

If \(A, B, C\) are \(3 \times 3\)-matrices, \(\operatorname{det}(A)=9, \operatorname{det}(B)=2, \operatorname{det}(C)=3\), then \(\operatorname{det}\left(3 C^{T} B A^{-1}\right)=\) Select one:
a. 6
- b. 18
c. 16
- d. 2

The correct answer is: 18

Question 27
Correct
Mark 1.00 out of 1.00

If \(A\) and \(B\) are singular matrices, then \(A+B\) is also singular.

Select one:
- a. False \(\downarrow\)
b. True

Question 28
Correct
Mark 1.00 out of
1.00

In the \(n \times n\)-linear system \(A x=b\), if \(A\) is singular and \(b\) is a linear combination of the columns of \(A\) then the system has

Select one:
a. no solution
b. a unique solution
- c. infinitely many solutions \(\checkmark\)
d. exactly two solutions

The correct answer is: infinitely many solutions
\begin{tabular}{l} 
Question 29 \\
Correct \\
Mark 1.00 out of \\
1.00
\end{tabular}\(\quad\)\begin{tabular}{l} 
If \(A\) is a \(4 \times 3\)-matrix, \(b \in \mathbb{R}^{4}\), and the system \(A x=b\) is consistent, then \(A x=b\) has a unique solution. \\
a. False \\
b. True
\end{tabular}

The correct answer is: False
Question 30
Correct
Mark 1.00 out of
1.00

If \(A\) is a \(3 \times 3\)-matrix and the system \(A x=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)\) has a unique solution, then the system \(A x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\)
Select one:
a. has infinitely many solutions
- b. has only the zero solution. \(\downarrow\)
c. is inconsistent

The correct answer is: has only the zero solution.

Mark 0.00 out of
1.00

If \(A\) is a \(4 \times 3\)-matrix, \(b \in \mathbb{R}^{\mathbb{4}}\), and the system \(A x=b\) is consistent, then \(A x=b\) has a unique solution.

Select one:
a. False
- b. True \(x\)

The correct answer is: False
" \(A\) 'sa singular matix, then the ssitem \(A x=b\) has infinte unube of fosutions

Select one:
- a. True \(\boldsymbol{x}\)
b. False
\begin{tabular}{l} 
Question \(\mathbf{4}\) \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}
Question 5
Correct
Mark 1.00 out of
1.00
1.00

Let \(A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & 1 & 3\end{array}\right)\),then \(\operatorname{det}(A)=\)
Select one:
- a. 4
b. 0
c. 8
d. 1

The correct answer is: 4
Question 6
Correct
Mark 1.00 out of
1.00

If \((A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 1 & 1 & 2 & 5\end{array}\right)\), then the system \(A x=b\) is inconsistent

\section*{Select one:}
a. False
- b. True \(\checkmark\)

\section*{The correct answer is: True}

Question 7
Incorrect
Mark 0.00 out of
1.00

If a matrix \(B\) is obtained from \(A\) by multiplying a row of \(A\) by a real number \(c\), then \(|A|=c|B|\).
Select one:
a. False
© b. True \(\mathbf{x}\)

The correct answer is: False
Question 8
Incorrect
Mark 0.00 out of
1.00
1.00

In the square linear system \(A x=b\), if \(A\) is singular and \(b\) is not a linear combination of the columns of \(A\) then the system

Select one:
a. can not tell
b. has a unique solution
- c. has infinitely many solutions \(\boldsymbol{x}\)
d. has no solution

The correct answer is: has no solution
Question 9
Correct
Mark 1.00 out of
1.00

If \(E\) is an elementary matrix of type III, then \(E^{T}\) is

Select one:
a. not an elementary matrix
© b. an elementary matrix of type III \(\checkmark\)
c. an elementary matrix of type I
d. an elementary matrix of type II

The correct answer is: an elementary matrix of type III
Question 10
Correct
Mark 1.00 out of
1.00

If \(A B=0\), where \(A\) and \(B\) are \(n \times n\) nonzero matrices. Then

Select one:
a. both \(A, B\) are nonsingular.
- b. both \(A, B\) are singular.
c. either \(A\) or \(B\) is singular
d. either \(A=0\) or \(B=0\)

The correct answer is: both \(A, B\) are singular.
Question 11
Correct
Mark 1.00 out of
1.00

If \(A, B\) are \(n \times n\)-skew-symmetric matrices \(\left(A\right.\) is skew symmetric if \(A^{T}=-A\) ), then \(A B+B A\) is symmetric Select one:
a. False
- b. True \(\checkmark\)

The correct answer is: True

Question 12
Correct
Mark 1.00 out of
1.00

If \(A\) is a \(3 \times 3\) matrix such that \(\operatorname{det}(A)=2\), then \(\operatorname{det}(3 A)=6\)

Select one:
a. True
- b. False \(\checkmark\)

Question 13
Correct
Mark 1.00 out of
1.00

The adjoint of the matrix \(\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)\) is

Select one:
a. \(\left(\begin{array}{cc}-5 & 3 \\ 2 & -1\end{array}\right)\)
b. \(\left(\begin{array}{cc}-3 & 5 \\ 1 & -2\end{array}\right)\)
c. \(\left(\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right)\)
d. \(\left(\begin{array}{cc}-2 & 1 \\ 5 & -3\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right)\)

Question 14
Correct
Mark 1.00 out of
1.00

Let \((1,2,0)^{T}\) and \((2,1,1)^{T}\) be the first two columns of a \(3 \times 3\) matrix \(A\) and \((1,1,1)^{T}\) be a solution of the system \(A x=(2,1,3)^{T}\). Then the third column of the matrix \(A\) is

\section*{Select one:}
a. \((1,1,0)^{T}\).
- b. \((-1,-2,2)^{T}\).
c. \((4,-1,1)^{T}\).
d. \((-1,-1,2)^{T}\).

The correct answer is: \((-1,-2,2)^{T}\).

Question 15
Correct
Mark 1.00 out of
1.00
\((0,0,0)^{T}\) is a linear combination of the vectors \((1,2,3)^{T},(1,4,1)^{T},(2,3,1)^{T}\)
Select one:
- a. True \(\checkmark\)
b. False

The correct answer is: True
Question 16
Correct
Mark 1.00 out of
1.00

Let \(A\) be a \(4 \times 4\)-matrix such that \(A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\), then
Select one:
a. There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\)
(-) b. \(A\) is singular.
c. \(A\) is the zero matrix
d. The system \(A x=0\) has only one solution

Question 17
Incorrect
Mark 0.00 out of
1.00
\(\qquad\)

Question 18
Incorrect
Mark 0.00 out of
1.00

If \(A\) is a \(4 \times 3\) matrix such that \(A x=0\) has only the zero solution, and \(b=\left(\begin{array}{l}1 \\ 3 \\ 2 \\ 0\end{array}\right)\), then the system \(A x=b\)

Select one:
a. is either inconsistent or has an infinite number of solutions
b. is inconsistent
c. is either inconsistent or has one solution
- d. has exactly one solution \(\mathbf{x}\)

The correct answer is: is either inconsistent or has one solution
Question 19
Correct
Mark 1.00 out of
1.00
1.00

If \(x_{0}\) is a solution of the nonho
Then \(x_{1}+x_{0}\) is a solution of
Select one:
a. the system \(A x=0\)
b. the system \(A x=2 b\)
c. the system \(A x=A b\)
d. the system \(A x=b\)
a

The correct answer is: the system \(A x=b\)

Question 20
Correct
Mark 1.00 out of
1.00

If \(A, B\) are two square nonzero matrices and \(A B=0\) then both \(A\) and \(B\) are singular

Select one:
a. False
(b. True \(V\)
```

Question 21
Incorrect
Mark 0.00 out of
1.00

```
Question 22
Correct
Mark 1.00 out of
1.00
    Question 23
Correct
Mark 1.00 out of
1.00

If \(A\) is a nonsingular \(n \times n\) matrix, \(b \in \mathbb{R}^{n}\), then Select one:
a. The system \(A x=b\) is inconsistent
b. The system \(A x=b\) has infinitely many solutions
c. The system \(A x=b\) has only two solutions
- d. The system \(A x=b\) has a unique solution
correct answer is: The system \(A x=b\) has a unique solution

Question 24
Correct
Mark 1.00 out of
1.00

If \(A, B\) are \(n \times n\) symmetric matrices then \(A B\) is symmetric.

Select one:
- a. False \(V\)
b. True

The correct answer is: False
Question 25
Correct
Mark 1.00 out of
1.00
1.00

If \(A\) is a \(2 \times 3\)-matrix, and \(b=a_{2}\) (second column of \(A\) ), then a solution to the system \(A x=b\) is

Select one:
a. \(x=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)\)
b. \(x=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\)
- c. \(x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\)
d. \(x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\)
```

Question 26
Incorrect
Mark 0.00 out of
1.00

```

If \(A\) and \(B\) are \(n \times n\) matrices such that \(A x \neq B x\) for all nonzero \(x \in \mathbb{R}^{n}\). Then

Select one:
a. \(A-B\) is nonsingular.
- b. \(A\) and \(B\) are nonsingular. \(\mathbf{x}\)
c. \(A-B\) is singular.
d. \(A\) and \(B\) are singular.

The correct answer is: \(A-B\) is nonsingular.
\begin{tabular}{|l|}
\hline Question 27 \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}

If \(A\) is a nonsingular \(n \times n\) matrix, then

Select one:
- a. There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\).
b. There is a singular matrix \(C\) such that \(A=C I\).
c. The system \(A x=0\) has a nontrivial (nonzero) solution.
d. \(\operatorname{det}(A)=1\)

The correct answer is: There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\).
```

Question 28
Correct
Mark 1.00 out of
1.00

```
Any elementary matrix is nonsigular
Select one:
    a. False
    - b. True \(\checkmark\)
The correct answer is: True
Question 29
Correct
Mark 1.00 out of
1.00

If \(A\) is singular and \(B\) is nonsingular \(n \times n\)-matrices, then \(A B\) is Select one:
- a. singular \(\downarrow\)
b. may or may not be singular
c. nonsingular

The correct answer is: singular
Question 30
Correct
Mark 1.00 out of
1.00

In the \(n \times n\)-linear system \(A x=b\), if \(A\) is singular and \(b\) is a linear combination of the columns of \(A\) then the system has

Select one:
a. exactly two solutions
b. no solution
c. a unique solution
- d. infinitely many solutions \(\checkmark\)

The correct answer is: infinitely many solutions
\(\leftarrow\) Announcements
Jump to...
```

 Started on Tuesday, 24 November 2020, 4:00 PM
 State Finished
 Completed on Tuesday, 24 November 2020, 5:07 PM
 Time taken 1 hour 7 mins
 Grade 24.00 out of 30.00 (80%)
    ```

Question 1
Correct
Mark 1.00 out of
1.00
```

f A, B, C are 3×3-matrices, $\operatorname{det}(A)=9, \operatorname{det}(B)=2, \operatorname{det}(C)=3$, then $\operatorname{det}\left(3 C^{T} B A^{-1}\right)=$
Select one:
a. 6
b. 16
(-) c. 18
d. 2

```

The correct answer is: 18

Question 2
Correct
Mark 1.00 out of
1.00

Let \(A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & -2 & 3\end{array}\right)\), then \(\operatorname{det}(A)=\)
Select one:
- a. 1
\(\checkmark\)
b. 9
c. 7
d. 0

The correct answer is: 1

Question 3
Correct
Mark 1.00 out of
1.00

The adjoint of the matrix \(\left(\begin{array}{cc}4 & 1 \\ 2 & -1\end{array}\right)\) is
Select one:
(-)..\(\left(\begin{array}{cc}-1 & -1 \\ -2 & 4\end{array}\right)\)
b. \(\left(\begin{array}{ll}-1 & -2 \\ -3 & -5\end{array}\right)\)
c. \(\left(\begin{array}{cc}4 & -1 \\ -2 & -1\end{array}\right)\)
d. \(\left(\begin{array}{cc}-1 & 2 \\ 1 & -4\end{array}\right)\)
Question 4
Correct
Mark 1.00 out of
1.00

If \(A=\left(\begin{array}{ccc}1 & 4 & -1 \\ 2 & 9 & 2 \\ -3 & -12 & 3\end{array}\right)\) then the lower triangular matrix \(L\) in the \(L U\)-facrorization of \(A\) is given by

Select one:
- a. \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1\end{array}\right)\)
b. \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 0\end{array}\right)\)
c. \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1\end{array}\right)\)
d. \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 0\end{array}\right)\)

The correct answer is: \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1\end{array}\right)\)

\section*{Question 5 \\ Correct \\ Mark 1.00 out of \\ 1.00}

Correct
Mark 1.00 out of
1.00

Any two \(n \times n\)-singular matrices are row equivalent.

Select one:
a. True
© b. False \(\checkmark\)

The correct answer is: False

If \(A\) is a nonsingular and symmetric matrix, then
Select one:
a. \(A^{-1}\) is singular and symmetric
b. \(A^{-1}\) is singular and not symmetric
- c. \(A^{-1}\) is nonsingular and symmetric
d. \(A^{-1}\) is nonsingular and not symmetric

The correct answer is: \(A^{-1}\) is nonsingular and symmetric
```

Question 7
Correct
Mark 1.00 out of
1.00

```

Question 8
Incorrect
Mark 0.00 out of
1.00
\[
00
\]

Correct
Mark 1.00 out of
1.00

Question 10
Correct
Mark 1.00 out of
1.00

Let \(A=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & a & 1 \\ 1 & 1 & 2\end{array}\right)\). the value(s) of \(a\) that make \(A\) nonsingular
Select one:
a. \(a \neq \frac{1}{2}\)
b. \(a=1\)
c. \(a=\frac{1}{2}\)
(- d. \(a \neq 1\)
\(\checkmark\)

The correct answer is: \(a \neq 1\)

Mark 0.00 out of 1.00

If \(A, B\) are \(n \times n\)-skew-symmetric matrices \(\left(A\right.\) is skew symmetric if \(\left.A^{T}=-A\right)\), then \(A B+B A\) is symmetric

Select one:
a. True
(b. False \(\boldsymbol{x}\)
\begin{tabular}{l} 
Question 12 \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}

If \(A\) is a singular matrix, then \(A^{T}\) is also singular.

Select one:
- a. True \(\checkmark\)
b. False

The correct answer is: True

Question 13
Correct
Mark 1.00 out of
1.00

Question 14
Correct
Mark 1.00 out of
1.00

If \(A\) is a \(4 \times 4\)-matrix and \(x=\left(\begin{array}{l}2 \\ 3 \\ 0 \\ 1\end{array}\right)\) is a solution to the system \(A x=0\), then \(A\) is singular.
Select one:
a. False
- b. True \(\checkmark\)

The correct answer is: True

Question 15
Correct
Mark 1.00 out of 1.00

If \(A\) and \(B\) are \(n \times n\) matrices such that \(A x \neq B x\) for all nonzero \(x \in \mathbb{R}^{n}\). Then
Select one:
a. \(A-B\) is singular.

If \(A\) is a \(4 \times 3\)-matrix, \(b \in \mathbb{R}^{4}\), and the system \(A x=b\) is consistent, then \(A x=b\) has a unique solution.

Select one:
a. True
- b. False \(\checkmark\)

The correct answer is: False
b. \(A\) and \(B\) are nonsingular.
- c. \(A-B\) is nonsingular.
d. \(A\) and \(B\) are singular.

The correct answer is: \(A-B\) is nonsingular.
\begin{tabular}{l} 
Question 16 \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}

If \(A=\left(\begin{array}{ccc}1 & -2 & 5 \\ 4 & -11 & 8 \\ -3 & 3 & -27\end{array}\right)\) and \(b=\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)\), then the system \(A x=b\) is consistent if and only if
Select one:
a. \(7 b_{1}-b_{2}+b_{3} \neq 1\)
b. \(7 b_{1}-b_{2}+b_{3} \neq 0\)
c. \(7 b_{1}-b_{2}+b_{3}=1\)
(-). \(7 b_{1}-b_{2}+b_{3}=0\)

The correct answer is: \(7 b_{1}-b_{2}+b_{3}=0\)
Question 17
Correct
Mark 1.00 out of
1.00
1.00

Any two \(n \times n\)-nonsingular matrices are row equivalent.
Select one:
a. False
- b. True \(\checkmark\)

The correct answer is: True

Question 18
Correct
Mark 1.00 out of
1.00

A square matrix \(A\) is nonsingular iff its RREF (reduced row echelon form) is the identity matrix.
Select one:
- a. True \(\checkmark\)
b. False

The correct answer is: True
\begin{tabular}{l} 
Question 19 \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}

If the row echelon form of \((A \mid b)\) is \(\left(\begin{array}{cccc|c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)\) then the general form of the solutions is given by

Select one:
a. \(x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)\)
b. b. \(x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)\)
c. \(x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)\)
d. \(x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)\)

\section*{Question 20 \\ Incorrect \\ Mark 0.00 out of \\ 1.00}

If \(A\) is a \(3 \times 3\) matrix with \(\operatorname{det}(A)=-1\). Then \(\operatorname{det}(\operatorname{adj}(A))=\)
Select one:
- a. 3 .
\(\times\)
b. 1.
c. -1 .
d. -3 .

The correct answer is: 1 .
Question 21
Correct
Mark 1.00 out of
1.00

If \(A\) is a \(3 \times 3\) matrix such that \(\operatorname{det}(A)=2\), then \(\operatorname{det}(3 A)=6\)

Select one:
a. True
- b. False \(\checkmark\)
\begin{tabular}{l} 
Question 22 \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}

If \(A\) is a \(3 \times 5\) matrix, then the system \(A x=0\)

Select one:
a. is inconsistent
- b. has infinitely many solutions
c. has no solution.
d. has only the zero solution

The correct answer is: has infinitely many solutions
Question 23
Correct
Mark 1.00 out of
1.00

Let \(U\) be an \(n \times n\)-matrix in reduced row echelon form and \(U \neq I\), then

Select one:
a. \(\operatorname{det}(U)=1\)
b. The system \(U x=0\) has only the zero solution.
c. \(U\) is the zero matrix
- d. The system \(U x=0\) has infinitely many solutions

The correct answer is: The system \(U x=0\) has infinitely many solutions

Question 24
Incorrect
Mark 0.00 out of 1.00

Let \(A\) be a \(3 \times 3\)-matrix with \(a_{1}=a_{2}\). If \(b=a_{2}-a_{3}\), where \(a_{1}, a_{2}, a_{3}\) ar the columns of \(A\), then a solution to the system \(A x=b\) is

Select one:
a. \(x=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\)
(-) b . \(x=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\)
x
c. \(x=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\)
d. \(x=\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\)
```

Question 25
Correct
Mark 1.00 out of
1.00

```

If \(A\) is an \(n \times n\) matrix and the system \(A x=b\) has infinitely many solutions, then

Select one:
a. \(A\) is nonsingular
b. \(A\) has a row of zeros
c. \(A\) is symmetric
- d. \(A\) singular


The correct answer is: \(A\) singular
Question 26
Correct
Mark 1.00 out of
1.00

Let \(A\) be a \(4 \times 4\)-matrix such that \(A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\), then

Select one:
a. \(A\) is the zero matrix
( \(\mathrm{b} . A\) is singular.
\(\checkmark\)
c. The system \(A x=0\) has only one solution
d. There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\)

The correct answer is: \(A\) is singular.
```

Question 27
Incorrect
Mark 0.00 out of
1.00

```

If \(B\) is a \(3 \times 3\) nonsingular matrix such that \(B^{3}=B\), then one of the following is always true

Select one:
a. \(B^{4}=B\).
(-) \(\mathrm{b} \cdot \operatorname{det}(B)=1\).
\(\times\)
c. \(B=0\).
d. \(B=B^{-1}\).

The correct answer is: \(B=B^{-1}\).
Question 28
Incorrect
Mark 0.00 out of
1.00

If \(A\) is a singular \(n \times n\)-matrix, \(b \in \mathbb{R}^{n}\), then the system \(A x=b\)

Select one:
a. is inconsistent
( b. has a unique solution \(\boldsymbol{x}\)
c. has infinitely many solutions.
d. has either no solution or an infinite number of solutions
```

Question }2
Correct
Mark 1.00 out of
1.00

```

Let \(A=\left(\begin{array}{llll}1 & 2 & 3 & 0 \\ 1 & 1 & 2 & 1 \\ 2 & 3 & 5 & 1\end{array}\right)\) and \(b=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)\). The system \(A x=b\)
Select one:
a. has exactly three solutions.
b. has a unique solution
- c. is inconsistent \(\checkmark\)
d. has infinitely many solutions

The correct answer is: is inconsistent
Question 30
Correct
Mark 1.00 out of
1.00

Let \((1,2,0)^{T}\) and \((2,1,1)^{T}\) be the first two columns of a \(3 \times 3\) matrix \(A\) and \((1,1,1)^{T}\) be a solution of the system \(A x=(2,1,-1)^{T}\). Then the third column of the matrix \(A\) is

Select one:
a. \((1,2,2)^{T}\).
- b. \((-1,-2,-2)^{T}\).
\(\checkmark\)
c. \((4,-1,1)^{T}\).
d. \((1,1,0)^{T}\).

The correct answer is: \((-1,-2,-2)^{T}\).
\(\leftarrow\) Announcements
Jump to...
```

 Started on Monday, 19 October 2020, 10:01 AM
 State Finished
 Completed on Monday, 19 October 2020, 10:31 AM
 Time taken 30 mins 1 sec
 Marks 23.00/25.00
 Grade 9.20 out of 10.00 (92%)
    ```

\section*{Question 1}

Correct
Mark 2.00 out of 2.00

If a matrix \(A\) is row equivalent to \(I\), then \(A\) is nonsingular.
Select one:
- a. True \(\checkmark\)
b. False

\section*{Question 2}

Correct
Mark 2.00 out
of 2.00
If a matrix \(A\) is nonsingular, then the matrix \(A^{T}\) is also nonsingular.
Select one:
- a. True \(\downarrow\)
b. False

Question 3
Correct
Mark 2.00 out
of 2.00

If \(A\) and \(B\) are \(n \times n\) nonsingular matrices, then \(A B\) is also nonsingular.
Select one:
- a. True \(\checkmark\)
b. False

Question 4
If \(A x=b\) is an overdetermined and consistent linear system, then it must have infinitely many solutions.
Correct
Mark 2.00 out
Select one:
of 2.00
a. True
© b. False

Question 5
Correct
Mark 2.00 out of 2.00

Let \(A\) be a \(3 \times 3\) matrix and suppose that \(A\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\). Then
Select one:
© a. \(A x=0<\) has infinitely many solutions
b. \(A x=(1,0,0)^{T}\) has infinitely many solutions
o. c. \(A\) is nonsingular
d. None of the above

\section*{Question 6}

If a matrix is in row echelon form, then it is also in reduced row echelon form.
Correct
Mark 2.00 out
Select one:

Question 7
Correct
Mark 3.00 out of 3.00

If \((A \mid b)=\left[\begin{array}{ccc|c}1 & 0 & 2 & 1 \\ -1 & 1 & -1 & 0 \\ -1 & 0 & \alpha & \beta\end{array}\right]\) is the augmented matrix of the system \(A x=b\). Answer the following questions.
The system has no solution if
\(\bigcirc \alpha=-2\) and \(\beta \neq-1 \vee\)
\(\bigcirc \alpha=-2\) and \(\beta=-1\)
\(\alpha \neq-2\) and \(\beta \neq-1\)
\(\alpha \neq-2\) and \(\beta=-1\)
The system has exactly one solution if
\(\bigcirc \alpha=-2\) and \(\beta=-1\)
○ \(\alpha \neq-2\)
\(\bigcirc \alpha=-2\)
\(\alpha \neq-2\) and \(\beta \neq-1\)
The system has infinitely many solutions if
\(\alpha \neq-2\) and \(\beta \neq-1\)
\(\bigcirc \alpha=-2\) and \(\beta \neq-1\)
\(\bigcirc \alpha=-2\) and \(\beta=-1\)
\(\alpha \neq-2\) and \(\beta=-1\)

\section*{Question 8}

Correct
Mark 2.00 out of 2.00

Let \(A=\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 1 & 0 \\ 1 & 8 & 1\end{array}\right]\). If we want to find the \(L U\) factorization of \(A\), then \(L=\)

Select one:
a. \(\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 2 & 1\end{array}\right]\)
b. \(\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 8 & 1\end{array}\right]\)
c. \(\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -2 & 1\end{array}\right]\)
d. \(\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -8 & 1\end{array}\right]\)

Question 9 Incorrect Mark 0.00 out of 2.00

A homogeneous system can have a nontrivial solution.

Select one:
a. True
( b. False \(\boldsymbol{x}\)

Question 10 The inverse of an elementary matrix is also an elementary matrix.
Correct
Mark 2.00 out of 2.00

Select one:
© a. Trueb. False

\section*{Question 11} If a system of linear equations is undetermined, then it must have infinitely many solutions.
Correct
Mark 2.00 out Select one:
of 2.00
- a. True
© b. False

Question 12 The sum of two \(n \times n\) nonsingular matrices is also nonsingular.
Correct
Mark 2.00 out
Select one:
- a. True
© b. False \(\downarrow\)

Started on Monday, 19 October 2020, 5:39 PM
State Finished
Completed on Monday, 19 October 2020, 5:57 PM
Time taken 18 mins 13 secs
Grade 10 out of 10 (100\%)

\section*{Question 1}

Correct
Mark 1 out of 1
If \(A B=0\), where \(A\) and \(B\) are \(n \times n\) matrices. Then

Select one:
( a. either \(A\) or \(B\) is singular
b. either \(A=0\) or \(B=0\)
c. both \(A, B\) are singular.
d. both \(A, B\) are nonsingular.

The correct answer is: either \(A\) or \(B\) is singular

If \(A, B, C\) are \(n \times n\)-matrices with \(A B=A C\), then \(B=C\)
Correct
Mark 1 out of 1
Select one:
( a. False
b. True

The correct answer is: False

\section*{Question 3}

The sum of two elementary matrices is elementary
Correct
Mark 1 out of 1
Select one:
O a. False
b. True

The correct answer is: False

\section*{Question 4}

If \(A, B\) are \(n \times n\)-symmetric matrices, then \(A B-B A\) is skew symmetric
Correct
Mark 1 out of 1
a. False
© b. True

\section*{Question 5}

Correct Mark 1 out of 1

In the square linear system \(A x=b\), if \(A\) is singular and \(b\) is a linear combination of the columns of \(A\) then the system has

Select one:
a. no solution
© b. infinitely many solutions
- c. a unique solution
od. can not tell

The correct answer is: infinitely many solutions

Question 6
Correct Mark 1 out of 1

Question 7
Correct
Mark 1 out of 1
If \(A\) is a \(3 \times 3\)-matrix and the system \(A x=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)\) has a unique solution, then the system \(A x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\)

\section*{Select one:}
a. has infinitely many solutionsb. none of the abovec. is inconsistentd. has only the zero solution.

The correct answer is: has only the zero solution.

If \((A \mid b)=\left(\begin{array}{cccc:c}1 & 2 & 1 & -1 & 0 \\ 2 & 3 & 1 & 1 & -1 \\ 0 & 1 & 1 & \alpha & \beta\end{array}\right)\), then the system is inconsistent if

Select one:
a. \(\alpha=-3\) and \(\beta=1\)b. \(\alpha \neq-3\) and \(\beta \neq 1\)c. \(\alpha=-3\) and \(\beta \neq 1\)d. \(\alpha \neq-3\) and \(\beta\) any number

The correct answer is: \(\alpha=-3\) and \(\beta \neq 1\)

Question 8
Correct Mark 1 out of 1

If \(y, z\) are solutions to \(A x=b\), then \(y-z\) is a solution of the system \(A x=0\).
Select one:
© a. Trueb. False

The correct answer is: True

Question 9
If \(A\) is a \(3 \times 4\)-matrix, and \(b=a_{2}\) (second column of \(A\) ), then a solution to the system \(A x=b\) is Correct Mark 1 out of 1

Select one:
- a. \(x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)\)
b. \(x=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\)
c. \(x=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)\)
d. \(x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)\)

Question 10 If \(B\) is a \(3 \times 3\) matrix such that \(B^{2}=B\). One of the following is always true
Correct
Mark 1 out of 1
Select one:
(c) a. \(B^{5}=B\).
b. b. \(B=0\).
c. \(B=I\).
d. \(B\) is nonsingular.

The correct answer is: \(B^{5}=B\).
```

 Started on Tuesday, 24 November 2020, 3:50 PM
 State Finished
 Completed on Tuesday, 24 November 2020, 4:53 PM
 Time taken 1 hour 2 mins
 Grade 28.00 out of 30.00 (93%)
    ```

Question 1
Correct
Mark 1.00 out of
1.00
```

An $n \times n$ matrix A is invertible if and only if
Select one:
a. $|A|=0$
b. $A x=0$ has a nonzero solution
c. $A=I$

- d. there exists a matrix B such that $A B=I$

```

The correct answer is: there exists a matrix \(B\) such that \(A B=I\)

Question 2
Correct
Mark 1.00 out of
1.00
\((0,0,0)^{T}\) is a linear combination of the vectors \((1,2,3)^{T},(1,4,1)^{T},(2,3,1)^{T}\)

Select one:
- a. True \(\sqrt{ }\)
b. False

The correct answer is: True
Question 3
Correct
Mark 1.00 out of
1.00

In the \(n \times n\)-linear system \(A x=b\), if \(A\) is singular and \(b\) is a linear combination of the columns of \(A\) then the system has

Select one:
a. exactly two solutions
b. no solution
c. a unique solution
- d. infinitely many solutions \(\downarrow\)

The correct answer is: infinitely many solutions
\begin{tabular}{|c|c|}
\hline Question 4 & If \(y, z\) are solutions to \(A x=b\), then \(y+z\) is a solution of the system \(A x=0\). \\
\hline \multicolumn{2}{|l|}{Correct} \\
\hline Mark 1.00 out of & Select one: \\
\hline 1.00 & a. True \\
\hline & ( b. False \(\sqrt{ }\) \\
\hline
\end{tabular}

The correct answer is: False

Question 5
Incorrect
Mark 0.00 out of
1.00 \(\qquad\)

Question 6
Correct
Mark 1.00 out of
1.00 \(\qquad\)

Question 7
Correct
Mark 1.00 out of
1.00

Any two \(n \times n\)-singular matrices are row equivalent.

Select one:
a. False
(b) True x

\section*{The correct answer is: False}

If \(A\) is a \(4 \times 3\)-matrix, \(b \in \mathbb{R}^{4}\), and the system \(A x=b\) is consistent, then \(A x=b\) has a unique solution.

Select one:
a. True
(b. False \(\checkmark\)

The correct answer is: False

If \((A \mid b)=\left(\begin{array}{ccc|c}1 & 2 & -1 & 0 \\ 2 & 3 & 1 & -1 \\ 1 & 1 & \alpha & \beta\end{array}\right)\), then the system has only one solution if
Select one:
- a. \(\alpha \neq 2\) and \(\beta\) any number
b. \(\alpha \neq 2\) and \(\beta \neq-1\)
c. \(\alpha=2\) and \(\beta=-1\)
d. \(\alpha=2\) and \(\beta \neq-1\)

The correct answer is: \(\alpha \neq 2\) and \(\beta\) any number
\begin{tabular}{|l|}
\hline Question \(\mathbf{8}\) \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}

Question 9
Correct
Mark 1.00 out of 1.00

If \(A\) is a nonsingular \(3 \times 3\)-matrix, then the reduced row echelon form of \(A\) has no row of zeros.
Select one:
a. False
- b. True \(V\)

The correct answer is: True

If \(E\) is an elementary matrix then one of the following statements is not true

Select one:
a. \(E^{-1}\) is an elementary matrix.
b. \(E\) is nonsingular.
c. \(E^{T}\) is an elementary matrix.
- d. \(E+E^{T}\) is an elementary matrix. \(\checkmark\)
\begin{tabular}{l} 
Question 10 \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}

If \(A\) is a \(3 \times 3\) matrix with \(\operatorname{det}(A)=-2\). Then \(\operatorname{det}(\operatorname{adj}(A))=\)
Select one:
- a. 4.
b. -4 .
c. -8 .
d. 8 .

The correct answer is: 4 .

Question 11
Correct
Mark 1.00 out of
1.00

Question 12
Correct
Mark 1.00 out of
1.00

If \(A\) is singular and \(B\) is nonsingular \(n \times n\)-matrices, then \(A B\) is

Select one:
- a. singular \(\vee\)
b. may or may not be singular
c. nonsingular

The correct answer is: singular

If \((A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 1 & 1 & 2 & 5\end{array}\right)\), then the system \(A x=b\) is inconsistent
Select one:
- a. True \(\checkmark\)
b. False

The correct answer is: True

Question 13
Correct
Mark 1.00 out of
1.00

If \(A\) is a singular \(n \times n\)-matrix, \(b \in \mathbb{R}^{n}\), then the system \(A x=b\)
Select one:
- a. has either no solution or an infinite number of solutions \(\downarrow\)
b. has infinitely many solutions.
- c. has a unique solution
d. is inconsistent

The correct answer is: has either no solution or an infinite number of solutions

Question 14
Correct
Mark 1.00 out of
1.00

If \(A\) is symmetric and skew symmetric then \(A=0\). ( \(A\) is skew symmetric if \(A=-A^{T}\) ).

Select one:
- a. True \(\checkmark\)
b. False
\begin{tabular}{l|}
\hline Question 15 \\
Correct \\
Mark 1.00 out of \\
1.00
\end{tabular}
1.00

If \(A=L U\) is the \(L U\)-factorization of a matrix \(A\), and \(A\) is singular, then

Select one:
a. \(L\) and \(U\) are both singular
- b. \(U\) is singular and \(L\) is nonsigular
\(\checkmark\)
c. \(L\) and \(U\) are both nonsingular
d. \(L\) is singular and \(U\) is nonsigular

The correct answer is: \(U\) is singular and \(L\) is nonsigular
```

Question 16
Correct
Mark 1.00 out of
1.00
1.00

```
\(\square\)

Question 17
Correct
Mark 1.00 out of
1.00

Question 18
Correct
Mark 1.00 out of
1.00

If \(A\) and \(B\) are singular matrices, then \(A+B\) is also singular.

Select one:
- a. False \(\checkmark\)
b. True

The correct answer is: False

If \(A\) is a singular matrix, then \(A\) can be written as a product of elementary matrices.

Select one:
- a. False \(\checkmark\)
b. True

The correct answer is: False

Let \((1,2,0)^{T}\) and \((2,1,1)^{T}\) be the first two columns of a \(3 \times 3\) matrix \(A\) and \((1,1,1)^{T}\) be a solution of the system \(A x=(4,4,5)^{T}\). Then the third column of the matrix \(A\) is

Select one:
- a. \((1,1,4)^{T}\).
\(\checkmark\)
b. \((4,-1,1)^{T}\).
c. \((-1,-1,-4)^{T}\).
d. \((-1,-2,1)^{T}\).

The correct answer is: \((1,1,4)^{T}\).

Question 19
Correct
Mark 1.00 out of
1.00

Let \(A\) be a \(3 \times 4\) matrix which has a row of zeros, and let \(B\) be a \(4 \times 4\) matrix, then \(A B\) has a row of zeros.

Select one:
- a. True \(\downarrow\)
b. False

Let \(A\) be a \(4 \times 4\)-matrix such that \(A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\), then
Select one:
a. There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\)
b. \(A\) is the zero matrix
c. The system \(A x=0\) has only one solution
- d. \(A\) is singular. \(\checkmark\)

The correct answer is: \(A\) is singular.
```

Question 21
Correct
Mark 1.00 out of
1.00

```
estion 22
Correct
Mark 1.00 out of
1.00

Let \(A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & -1 & 3\end{array}\right)\),then \(\operatorname{det}(A)=\)
Select one:
(-) a. 2
b. 3
c. 5
- d. 0

The correct answer is: 2
```

Question 23
Correct
Mark 1.00 out of
1.00

```

If the row echelon form of \((A \mid b)\) is \(\left(\begin{array}{cccc:c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)\) then the general form of the solutions is given by

Select one:
a. \(x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)\)
b. \(x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)\)
© c. \(x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)\)
d. \(x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)\)

Question 24
Correct
Mark 1.00 out of
1.00

If \(A, B\) are \(n \times n\)-skew-symmetric matrices \(\left(A\right.\) is skew symmetric if \(\left.A^{T}=-A\right)\), then \(A B+B A\) is symmetric Select one:
- a. True \(\vee\)
b. False

The correct answer is: True

Question 25
Correct
Mark 1.00 out of 1.00

Let \(A\) be a \(4 \times 3\)-matrix with \(a_{2}-a_{3}=0\). If \(b=a_{1}+a_{2}+a_{3}\), where \(a_{j}\) is the \(j\) th column of \(A\), then the system \(A x=b\) will have infinitely many solutions.

\section*{Select one:}
a. False
- b. True \(\checkmark\)

The correct answer is: True
Question 26
Correct
Mark 1.00 out of
1.00

If \(A\) is a \(3 \times 3\)-matrix and the system \(A x=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)\) has a unique solution, then the system \(A x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\)

Select one:
a. is inconsistent
© b. has only the zero solution. \(\downarrow\)
c. has infinitely many solutions

The correct answer is: has only the zero solution.
Question 27
Incorrect
Mark 0.00 out of
1.00
1.00

If \(A B=0\), where \(A\) and \(B\) are \(n \times n\) nonzero matrices. Then
Select one:
© a. either \(A\) or \(B\) is singular \(\times\)
b. both \(A, B\) are singular.
c. both \(A, B\) are nonsingular.
d. either \(A=0\) or \(B=0\)

The correct answer is: both \(A, B\) are singular.
\begin{tabular}{l} 
Question 28 \\
Correct \\
\hline Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}
1.00

If \(x_{0}\) is a solution of the nonhomogeneous system \(A x=b\) and \(x_{1}\) is a solution of the homogeneous system \(A x=0\). Then \(x_{1}+x_{0}\) is a solution of

Select one:
a. the system \(A x=0\)
b. the system \(A x=2 b\)
c. the system \(A x=A b\)
( d. the system \(A x=b\)
\(\checkmark\)

The correct answer is: the system \(A x=b\)

Question 29
Correct
Mark 1.00 out of
1.00

If \(A\) is a nonsingular \(n \times n\) matrix, \(b \in \mathbb{R}^{n}\), then

Select one:
a. The system \(A x=b\) is inconsistent
b. The system \(A x=b\) has only two solutions
© c. The system \(A x=b\) has a unique solution
d. The system \(A x=b\) has infinitely many solutions

The correct answer is: The system \(A x=b\) has a unique solution
```

Question 30
Correct
Mark 1.00 out of
1.00
The adjoint of the matrix }($$
\begin{array}{cc}{-1}&{2}\\{1}&{3}\end{array}
$$)\mathrm{ is
Select one:
a. $\left(\begin{array}{cc}-1 & 1 \\ 2 & -3\end{array}\right)$
b. $\left(\begin{array}{cc}1 & -2 \\ -1 & -3\end{array}\right)$
(.) c. $\left(\begin{array}{cc}3 & -2 \\ -1 & -1\end{array}\right)$
d. $\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right)$
The correct answer is: $\left(\begin{array}{cc}3 & -2 \\ -1 & -1\end{array}\right)$

```

Jump to..

Data retention summary.
Switch to the standard theme
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta / General / First exam

```
\begin{tabular}{rl} 
Started on & Tuesday, 24 November 2020, 3:51 PM \\
State & Finished \\
Completed on & Tuesday, 24 November 2020, 4:48 PM \\
Time taken & 57 mins 9 secs \\
Grade & 28.00 out of \(30.00(93 \%)\)
\end{tabular}

Question 1
Correct
Mark 1.00 out of
1.00

Let \(A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & 4 & 3\end{array}\right)\),then \(\operatorname{det}(A)=\)
Select one:
a. 0
b. 9
c. 5
- d. 7
\(\checkmark\)

The correct answer is: 7

Question 2
Correct
Mark 1.00 out of
1.00

If \(A\) is a \(2 \times 3\)-matrix, and \(b=a_{2}\) (second column of \(A\) ), then a solution to the system \(A x=b\) is

Select one:
a. \(x=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)\)
b. \(x=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\)
с. \(x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)\)
- d. \(x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\)
```

Question 3
Correct
Mark 1.00 out of
1.00
If }A\mathrm{ is a 2 }\times2\mathrm{ matrix with }\operatorname{det}(A)=-2\mathrm{ . Then }\operatorname{det}(\operatorname{adj}(A))
Select one:
a.2.
(.) b. -2.
c. -4.
d. 4.
The correct answer is: -2.

```
```

Question 4
If }A,B,C\mathrm{ are }n\timesn\mathrm{ nonsingular matrices, then }\mp@subsup{A}{}{2}-\mp@subsup{B}{}{2}=(A+B)(A-B
Correct
Mark 1.00 out of
1.00
Select one:

- a. False v
b. True

```

The correct answer is: False
```

Question 5
If A is a singular matrix, then A can be written as a product of elementary matrices.
Correct
Mark 1.00 out of
1.00

- a. False \checkmark
b. True

```

The correct answer is: False


Mark 1.00 out of
1.00

Select one:
a. \(\left(\begin{array}{cc}5 & -1 \\ 2 & 6\end{array}\right)\)
- b. \(\left(\begin{array}{cc}6 & -2 \\ 1 & 5\end{array}\right)\)
c. \(\left(\begin{array}{cc}-5 & -1 \\ 2 & -6\end{array}\right)\)
d. \(\left(\begin{array}{cc}-6 & 2 \\ -1 & -5\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{cc}6 & -2 \\ 1 & 5\end{array}\right)\)
```

Question }
Correct
Mark 1.00 out of
1.00

```

If \(A\) and \(B\) are \(n \times n\) matrices such that \(A x \neq B x\) for all nonzero \(x \in \mathbb{R}^{n}\). Then
Select one:
a. \(A\) and \(B\) are singular.
b. \(A-B\) is singular.
c. \(A\) and \(B\) are nonsingular.
© d. \(A-B\) is nonsingular.
\(\checkmark\)

The correct answer is: \(A-B\) is nonsingular.
```

Question 8
Incorrect
Mark 0.00 out of
1.00
-
(b) True \mathbf{x}

```

The correct answer is: False

Question 9
Correct
Mark 1.00 out of
1.00

Let \(A\) be a \(4 \times 4\)-matrix such that \(A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\), then
Select one:
a. There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\)
b. The system \(A x=0\) has only one solution
(-) c. \(A\) is singular.
d. \(A\) is the zero matrix

The correct answer is: \(A\) is singular.

Question 10
Correct
Mark 1.00 out of
1.00

If \(A\) is symmetric and skew symmetric then \(A=0\). ( \(A\) is skew symmetric if \(A=-A^{T}\) ).
Select one:
a. False
© b. True \(\checkmark\)

The correct answer is: True

An \(n \times n\) matrix \(A\) is invertible if and only if

Select one:
- a. there exists a matrix \(B\) such that \(A B=I\)
b. \(A=I\)
c. \(|A|=0\)
d. \(A x=0\) has a nonzero solution

The correct answer is: there exists a matrix \(B\) such that \(A B=I\)
Question 12
Correct
Mark 1.00 out of
1.00

Question 13
Correct
Mark 1.00 out of
1.00

If \(A, B, C\) are \(n \times n\)-matrices with \(A\) nonsigular and \(A B=A C\), then \(B=C\)
Select one:
a. False
- b. True \(\checkmark\)

The correct answer is: True

In the square linear system \(A x=b\), if \(A\) is singular and \(b\) is not a linear combination of the columns of \(A\) then the system

Select one:
a. has a unique solution
b. has infinitely many solutions
c. can not tell
- d. has no solution \(\downarrow\)

\section*{The correct answer is: has no solution}
```

Question 14
Correct
Mark 1.00 out of
1.00

```

Any two \(n \times n\)-singular matrices are row equivalent.

Select one:
- a. False
b. True

The correct answer is: False

Question 15
Correct
Mark 1.00 out of
1.00

If \(A\) is a singular \(n \times n\)-matrix, \(b \in \mathbb{R}^{n}\), then the system \(A x=b\)

Select one:
a. is inconsistent
b. has a unique solution
- c. has either no solution or an infinite number of solutions
d. has infinitely many solutions.
```

Question }1
Correct
Mark 1.00 out of 1.00

```

Let \(A\) be a \(3 \times 4\) matrix which has a row of zeros, and let \(B\) be a \(4 \times 4\) matrix, then \(A B\) has a row of zeros.
Select one:
- a. True \(\sqrt{ }\)
b. False

The correct answer is: True
```

Question 17
Correct
Mark 1.00 out of
1.00

```

If \(E\) is an elementary matrix of type III, then \(E^{T}\) is

Select one:
a. an elementary matrix of type II
b. an elementary matrix of type I
- c. an elementary matrix of type III \(\downarrow\)
d. not an elementary matrix

The correct answer is: an elementary matrix of type III

Question 18
Correct
Mark 1.00 out of 1.00

If the row echelon form of \((A \mid b)\) is \(\left(\begin{array}{cccc:c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)\) then the general form of the solutions is given by
Select one:
a. \(x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)\)
b. \(x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)\)
© c. \(x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)\)
d. \(x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)\)

Question 19
Incorrect
Mark 0.00 out of
1.00

If \((A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 0 & 3 & 2 & 1\end{array}\right)\) is the augmented matrix of the system \(A x=b\) then the system has no solution

Select one:
- a. False \(\boldsymbol{x}\)
b. True

The correct answer is: True
Question 20
Correct
Mark 1.00 out of
1.00

If \((A \mid b)=\left(\begin{array}{ccc|c}1 & 2 & -1 & 0 \\ 2 & 3 & 1 & -1 \\ 1 & 1 & \alpha & \beta\end{array}\right)\), then the system is inconsistent if
Select one:
a. \(\alpha \neq 2\) and \(\beta \neq-1\)
b. \(\alpha \neq 2\) and \(\beta\) any number
c. \(\alpha=2\) and \(\beta=-1\)
(0) d. \(\alpha=2\) and \(\beta \neq-1\)

The correct answer is: \(\alpha=2\) and \(\beta \neq-1\)

Question 21
Correct
Mark 1.00 out of
1.00

Let \((1,2,0)^{T}\) and \((2,1,1)^{T}\) be the first two columns of a \(3 \times 3\) matrix \(A\) and \((1,1,1)^{T}\) be a solution of the system \(A x=(5,2,4)^{T}\). Then the third column of the matrix \(A\) is

Select one:
a. \((-2,1,-3)^{T}\).
b. \((1,-1,-4)^{T}\).
© c. \((2,-1,3)^{T}\).
\(\checkmark\)
d. \((1,-1,4)^{T}\).

The correct answer is: \((2,-1,3)^{T}\).

Question 22
Correct
Mark 1.00 out of 1.00

If \(A\) is a nonsingular \(n \times n\) matrix, then

\section*{Select one:}
( a. There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\).
b. \(\operatorname{det}(A)=1\)
c. There is a singular matrix \(C\) such that \(A=C I\).
d. The system \(A x=0\) has a nontrivial (nonzero) solution.

The correct answer is: There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\).
```

Question 23
Correct
Mark 1.00 out of
1.00

```
    If \(A\) is a symmetric \(n \times n\)-matrix and \(P\) any \(n \times n\)-matrix, then \(P A P^{T}\) is

Select one:
- a. symmetric \(\checkmark\)
b. not defined
c. singular
d. not symmetric

The correct answer is: symmetric
```

Question 24
Correct
Mark 1.00 out of
1.00
If A is an $n \times n$ matrix and the system $A x=b$ has infinitely many solutions, then
Select one:
a. A is symmetric
b. A has a row of zeros

- c. A singular
d. A is nonsingular

```

The correct answer is: \(A\) singular
```

Question 25
Correct
Mark 1.00 out of
1.00
If }A\mathrm{ is a 3 }\times3\mathrm{ matrix such that }\operatorname{det}(A)=2\mathrm{ , then det (3A)=6
Select one:
O}\mathrm{ a. False
b. True

```

The correct answer is: False

Question 26
Correct
Mark 1.00 out of
1.00

If \(A, B, C\) are \(3 \times 3\)-matrices, \(\operatorname{det}(A)=9, \operatorname{det}(B)=2, \operatorname{det}(C)=3\), then \(\operatorname{det}\left(3 C^{T} B A^{-1}\right)=\) Select one:
a. 6
- b. 18
c. 16
- d. 2

The correct answer is: 18

Question 27
Correct
Mark 1.00 out of 1.00

If \(A\) and \(B\) are singular matrices, then \(A+B\) is also singular.

Select one:
- a. False \(\downarrow\)
b. True

Question 28
Correct
Mark 1.00 out of
1.00

In the \(n \times n\)-linear system \(A x=b\), if \(A\) is singular and \(b\) is a linear combination of the columns of \(A\) then the system has

Select one:
a. no solution
b. a unique solution
- c. infinitely many solutions \(\checkmark\)
d. exactly two solutions

The correct answer is: infinitely many solutions
\begin{tabular}{l} 
Question 29 \\
Correct \\
Mark 1.00 out of \\
1.00
\end{tabular}\(\quad\)\begin{tabular}{l} 
If \(A\) is a \(4 \times 3\)-matrix, \(b \in \mathbb{R}^{4}\), and the system \(A x=b\) is consistent, then \(A x=b\) has a unique solution. \\
a. False \\
b. True
\end{tabular}

The correct answer is: False
Question 30
Correct
Mark 1.00 out of
1.00

If \(A\) is a \(3 \times 3\)-matrix and the system \(A x=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)\) has a unique solution, then the system \(A x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\)
Select one:
a. has infinitely many solutions
- b. has only the zero solution. \(\downarrow\)
c. is inconsistent

The correct answer is: has only the zero solution.

Mark 0.00 out of
1.00

If \(A\) is a \(4 \times 3\)-matrix, \(b \in \mathbb{R}^{\mathbb{4}}\), and the system \(A x=b\) is consistent, then \(A x=b\) has a unique solution.

Select one:
a. False
- b. True \(x\)

The correct answer is: False
" \(A\) 'sa singular matix, then the ssitem \(A x=b\) has infinte unube of fosutions

Select one:
- a. True \(\boldsymbol{x}\)
b. False
\begin{tabular}{l} 
Question \(\mathbf{4}\) \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}
Question 5
Correct
Mark 1.00 out of
1.00
1.00

Let \(A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & 1 & 3\end{array}\right)\),then \(\operatorname{det}(A)=\)
Select one:
- a. 4
b. 0
c. 8
d. 1

The correct answer is: 4
Question 6
Correct
Mark 1.00 out of
1.00

If \((A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 1 & 1 & 2 & 5\end{array}\right)\), then the system \(A x=b\) is inconsistent

\section*{Select one:}
a. False
- b. True \(\checkmark\)

\section*{The correct answer is: True}

Question 7
Incorrect
Mark 0.00 out of
1.00

If a matrix \(B\) is obtained from \(A\) by multiplying a row of \(A\) by a real number \(c\), then \(|A|=c|B|\).
Select one:
a. False
© b. True \(\mathbf{x}\)

The correct answer is: False
Question 8
Incorrect
Mark 0.00 out of
1.00
1.00

In the square linear system \(A x=b\), if \(A\) is singular and \(b\) is not a linear combination of the columns of \(A\) then the system

Select one:
a. can not tell
b. has a unique solution
- c. has infinitely many solutions \(\boldsymbol{x}\)
d. has no solution

The correct answer is: has no solution
Question 9
Correct
Mark 1.00 out of
1.00

If \(E\) is an elementary matrix of type III, then \(E^{T}\) is

Select one:
a. not an elementary matrix
© b. an elementary matrix of type III \(\checkmark\)
c. an elementary matrix of type I
d. an elementary matrix of type II

The correct answer is: an elementary matrix of type III
Question 10
Correct
Mark 1.00 out of
1.00

If \(A B=0\), where \(A\) and \(B\) are \(n \times n\) nonzero matrices. Then

Select one:
a. both \(A, B\) are nonsingular.
- b. both \(A, B\) are singular.
c. either \(A\) or \(B\) is singular
d. either \(A=0\) or \(B=0\)

The correct answer is: both \(A, B\) are singular.
Question 11
Correct
Mark 1.00 out of
1.00

If \(A, B\) are \(n \times n\)-skew-symmetric matrices \(\left(A\right.\) is skew symmetric if \(A^{T}=-A\) ), then \(A B+B A\) is symmetric Select one:
a. False
- b. True \(\checkmark\)

The correct answer is: True

Question 12
Correct
Mark 1.00 out of
1.00

If \(A\) is a \(3 \times 3\) matrix such that \(\operatorname{det}(A)=2\), then \(\operatorname{det}(3 A)=6\)

Select one:
a. True
- b. False \(\checkmark\)

Question 13
Correct
Mark 1.00 out of
1.00

The adjoint of the matrix \(\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)\) is

Select one:
a. \(\left(\begin{array}{cc}-5 & 3 \\ 2 & -1\end{array}\right)\)
b. \(\left(\begin{array}{cc}-3 & 5 \\ 1 & -2\end{array}\right)\)
c. \(\left(\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right)\)
d. \(\left(\begin{array}{cc}-2 & 1 \\ 5 & -3\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right)\)

Question 14
Correct
Mark 1.00 out of
1.00

Let \((1,2,0)^{T}\) and \((2,1,1)^{T}\) be the first two columns of a \(3 \times 3\) matrix \(A\) and \((1,1,1)^{T}\) be a solution of the system \(A x=(2,1,3)^{T}\). Then the third column of the matrix \(A\) is

\section*{Select one:}
a. \((1,1,0)^{T}\).
- b. \((-1,-2,2)^{T}\).
c. \((4,-1,1)^{T}\).
d. \((-1,-1,2)^{T}\).

The correct answer is: \((-1,-2,2)^{T}\).

Question 15
Correct
Mark 1.00 out of
1.00
\((0,0,0)^{T}\) is a linear combination of the vectors \((1,2,3)^{T},(1,4,1)^{T},(2,3,1)^{T}\)
Select one:
- a. True \(\checkmark\)
b. False

The correct answer is: True
Question 16
Correct
Mark 1.00 out of
1.00

Let \(A\) be a \(4 \times 4\)-matrix such that \(A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\), then
Select one:
a. There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\)
(-) b. \(A\) is singular.
c. \(A\) is the zero matrix
d. The system \(A x=0\) has only one solution

Question 17
Incorrect
Mark 0.00 out of
1.00
\(\qquad\)

Question 18
Incorrect
Mark 0.00 out of
1.00

If \(A\) is a \(4 \times 3\) matrix such that \(A x=0\) has only the zero solution, and \(b=\left(\begin{array}{l}1 \\ 3 \\ 2 \\ 0\end{array}\right)\), then the system \(A x=b\)

Select one:
a. is either inconsistent or has an infinite number of solutions
b. is inconsistent
c. is either inconsistent or has one solution
- d. has exactly one solution \(\mathbf{x}\)

The correct answer is: is either inconsistent or has one solution
Question 19
Correct
Mark 1.00 out of
1.00
1.00

If \(x_{0}\) is a solution of the nonho
Then \(x_{1}+x_{0}\) is a solution of
Select one:
a. the system \(A x=0\)
b. the system \(A x=2 b\)
c. the system \(A x=A b\)
d. the system \(A x=b\)
a

The correct answer is: the system \(A x=b\)

Question 20
Correct
Mark 1.00 out of
1.00

If \(A, B\) are two square nonzero matrices and \(A B=0\) then both \(A\) and \(B\) are singular

Select one:
a. False
(b. True \(V\)
```

Question 21
Incorrect
Mark 0.00 out of
1.00

```
Question 22
Correct
Mark 1.00 out of
1.00
    Question 23
Correct
Mark 1.00 out of
1.00

If \(A\) is a nonsingular \(n \times n\) matrix, \(b \in \mathbb{R}^{n}\), then Select one:
a. The system \(A x=b\) is inconsistent
b. The system \(A x=b\) has infinitely many solutions
c. The system \(A x=b\) has only two solutions
- d. The system \(A x=b\) has a unique solution
correct answer is: The system \(A x=b\) has a unique solution

Question 24
Correct
Mark 1.00 out of
1.00

If \(A, B\) are \(n \times n\) symmetric matrices then \(A B\) is symmetric.

Select one:
- a. False \(V\)
b. True

The correct answer is: False
Question 25
Correct
Mark 1.00 out of
1.00
1.00

If \(A\) is a \(2 \times 3\)-matrix, and \(b=a_{2}\) (second column of \(A\) ), then a solution to the system \(A x=b\) is

Select one:
a. \(x=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)\)
b. \(x=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\)
- c. \(x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\)
d. \(x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\)
```

Question 26
Incorrect
Mark 0.00 out of
1.00

```

If \(A\) and \(B\) are \(n \times n\) matrices such that \(A x \neq B x\) for all nonzero \(x \in \mathbb{R}^{n}\). Then

Select one:
a. \(A-B\) is nonsingular.
- b. \(A\) and \(B\) are nonsingular. \(\mathbf{x}\)
c. \(A-B\) is singular.
d. \(A\) and \(B\) are singular.

The correct answer is: \(A-B\) is nonsingular.
\begin{tabular}{|l|}
\hline Question 27 \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}

If \(A\) is a nonsingular \(n \times n\) matrix, then

Select one:
- a. There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\).
b. There is a singular matrix \(C\) such that \(A=C I\).
c. The system \(A x=0\) has a nontrivial (nonzero) solution.
d. \(\operatorname{det}(A)=1\)

The correct answer is: There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\).
```

Question 28
Correct
Mark 1.00 out of
1.00

```
Any elementary matrix is nonsigular
Select one:
    a. False
    - b. True \(\checkmark\)
The correct answer is: True
Question 29
Correct
Mark 1.00 out of
1.00

If \(A\) is singular and \(B\) is nonsingular \(n \times n\)-matrices, then \(A B\) is Select one:
- a. singular \(\downarrow\)
b. may or may not be singular
c. nonsingular

The correct answer is: singular
Question 30
Correct
Mark 1.00 out of
1.00

In the \(n \times n\)-linear system \(A x=b\), if \(A\) is singular and \(b\) is a linear combination of the columns of \(A\) then the system has

Select one:
a. exactly two solutions
b. no solution
c. a unique solution
- d. infinitely many solutions \(\checkmark\)

The correct answer is: infinitely many solutions
\(\leftarrow\) Announcements
Jump to...
```

 Started on Tuesday, 24 November 2020, 4:00 PM
 State Finished
 Completed on Tuesday, 24 November 2020, 5:07 PM
 Time taken 1 hour 7 mins
 Grade 24.00 out of 30.00 (80%)
    ```

Question 1
Correct
Mark 1.00 out of
1.00
```

f A, B, C are 3×3-matrices, $\operatorname{det}(A)=9, \operatorname{det}(B)=2, \operatorname{det}(C)=3$, then $\operatorname{det}\left(3 C^{T} B A^{-1}\right)=$
Select one:
a. 6
b. 16
(-) c. 18
d. 2

```

The correct answer is: 18

Question 2
Correct
Mark 1.00 out of
1.00

Let \(A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & -2 & 3\end{array}\right)\), then \(\operatorname{det}(A)=\)
Select one:
- a. 1
\(\checkmark\)
b. 9
c. 7
d. 0

The correct answer is: 1

Question 3
Correct
Mark 1.00 out of
1.00

The adjoint of the matrix \(\left(\begin{array}{cc}4 & 1 \\ 2 & -1\end{array}\right)\) is
Select one:
(-)..\(\left(\begin{array}{cc}-1 & -1 \\ -2 & 4\end{array}\right)\)
b. \(\left(\begin{array}{ll}-1 & -2 \\ -3 & -5\end{array}\right)\)
c. \(\left(\begin{array}{cc}4 & -1 \\ -2 & -1\end{array}\right)\)
d. \(\left(\begin{array}{cc}-1 & 2 \\ 1 & -4\end{array}\right)\)
Question 4
Correct
Mark 1.00 out of
1.00

If \(A=\left(\begin{array}{ccc}1 & 4 & -1 \\ 2 & 9 & 2 \\ -3 & -12 & 3\end{array}\right)\) then the lower triangular matrix \(L\) in the \(L U\)-facrorization of \(A\) is given by

Select one:
- a. \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1\end{array}\right)\)
b. \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 0\end{array}\right)\)
c. \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1\end{array}\right)\)
d. \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 0\end{array}\right)\)

The correct answer is: \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1\end{array}\right)\)

\section*{Question 5 \\ Correct \\ Mark 1.00 out of \\ 1.00}

Correct
Mark 1.00 out of
1.00

Any two \(n \times n\)-singular matrices are row equivalent.

Select one:
a. True
© b. False \(\checkmark\)

The correct answer is: False

If \(A\) is a nonsingular and symmetric matrix, then
Select one:
a. \(A^{-1}\) is singular and symmetric
b. \(A^{-1}\) is singular and not symmetric
- c. \(A^{-1}\) is nonsingular and symmetric
d. \(A^{-1}\) is nonsingular and not symmetric

The correct answer is: \(A^{-1}\) is nonsingular and symmetric
```

Question 7
Correct
Mark 1.00 out of
1.00

```

Question 8
Incorrect
Mark 0.00 out of
1.00
\[
00
\]

Correct
Mark 1.00 out of
1.00

Question 10
Correct
Mark 1.00 out of
1.00

Let \(A=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & a & 1 \\ 1 & 1 & 2\end{array}\right)\). the value(s) of \(a\) that make \(A\) nonsingular
Select one:
a. \(a \neq \frac{1}{2}\)
b. \(a=1\)
c. \(a=\frac{1}{2}\)
(- d. \(a \neq 1\)
\(\checkmark\)

The correct answer is: \(a \neq 1\)

Mark 0.00 out of 1.00

If \(A, B\) are \(n \times n\)-skew-symmetric matrices \(\left(A\right.\) is skew symmetric if \(\left.A^{T}=-A\right)\), then \(A B+B A\) is symmetric

Select one:
a. True
(b. False \(\boldsymbol{x}\)
\begin{tabular}{l} 
Question 12 \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}

If \(A\) is a singular matrix, then \(A^{T}\) is also singular.

Select one:
- a. True \(\checkmark\)
b. False

The correct answer is: True

Question 13
Correct
Mark 1.00 out of
1.00

Question 14
Correct
Mark 1.00 out of
1.00

If \(A\) is a \(4 \times 4\)-matrix and \(x=\left(\begin{array}{l}2 \\ 3 \\ 0 \\ 1\end{array}\right)\) is a solution to the system \(A x=0\), then \(A\) is singular.
Select one:
a. False
- b. True \(\checkmark\)

The correct answer is: True

Question 15
Correct
Mark 1.00 out of 1.00

If \(A\) and \(B\) are \(n \times n\) matrices such that \(A x \neq B x\) for all nonzero \(x \in \mathbb{R}^{n}\). Then
Select one:
a. \(A-B\) is singular.

If \(A\) is a \(4 \times 3\)-matrix, \(b \in \mathbb{R}^{4}\), and the system \(A x=b\) is consistent, then \(A x=b\) has a unique solution.

Select one:
a. True
- b. False \(\checkmark\)

The correct answer is: False
b. \(A\) and \(B\) are nonsingular.
- c. \(A-B\) is nonsingular.
d. \(A\) and \(B\) are singular.

The correct answer is: \(A-B\) is nonsingular.
\begin{tabular}{l} 
Question 16 \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}

If \(A=\left(\begin{array}{ccc}1 & -2 & 5 \\ 4 & -11 & 8 \\ -3 & 3 & -27\end{array}\right)\) and \(b=\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)\), then the system \(A x=b\) is consistent if and only if
Select one:
a. \(7 b_{1}-b_{2}+b_{3} \neq 1\)
b. \(7 b_{1}-b_{2}+b_{3} \neq 0\)
c. \(7 b_{1}-b_{2}+b_{3}=1\)
(-). \(7 b_{1}-b_{2}+b_{3}=0\)

The correct answer is: \(7 b_{1}-b_{2}+b_{3}=0\)
Question 17
Correct
Mark 1.00 out of
1.00
1.00

Any two \(n \times n\)-nonsingular matrices are row equivalent.
Select one:
a. False
- b. True \(\checkmark\)

The correct answer is: True

Question 18
Correct
Mark 1.00 out of
1.00

A square matrix \(A\) is nonsingular iff its RREF (reduced row echelon form) is the identity matrix.
Select one:
- a. True \(\checkmark\)
b. False

The correct answer is: True
\begin{tabular}{l} 
Question 19 \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}

If the row echelon form of \((A \mid b)\) is \(\left(\begin{array}{cccc|c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)\) then the general form of the solutions is given by

Select one:
a. \(x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)\)
b. b. \(x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)\)
c. \(x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)\)
d. \(x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)\)

\section*{Question 20 \\ Incorrect \\ Mark 0.00 out of \\ 1.00}

If \(A\) is a \(3 \times 3\) matrix with \(\operatorname{det}(A)=-1\). Then \(\operatorname{det}(\operatorname{adj}(A))=\)
Select one:
- a. 3 .
\(\times\)
b. 1.
c. -1 .
d. -3 .

The correct answer is: 1 .
Question 21
Correct
Mark 1.00 out of
1.00

If \(A\) is a \(3 \times 3\) matrix such that \(\operatorname{det}(A)=2\), then \(\operatorname{det}(3 A)=6\)

Select one:
a. True
- b. False \(\checkmark\)
\begin{tabular}{l} 
Question 22 \\
Correct \\
Mark 1.00 out of \\
1.00 \\
\hline
\end{tabular}

If \(A\) is a \(3 \times 5\) matrix, then the system \(A x=0\)

Select one:
a. is inconsistent
- b. has infinitely many solutions
c. has no solution.
d. has only the zero solution

The correct answer is: has infinitely many solutions
Question 23
Correct
Mark 1.00 out of
1.00

Let \(U\) be an \(n \times n\)-matrix in reduced row echelon form and \(U \neq I\), then

Select one:
a. \(\operatorname{det}(U)=1\)
b. The system \(U x=0\) has only the zero solution.
c. \(U\) is the zero matrix
- d. The system \(U x=0\) has infinitely many solutions

The correct answer is: The system \(U x=0\) has infinitely many solutions

Question 24
Incorrect
Mark 0.00 out of 1.00

Let \(A\) be a \(3 \times 3\)-matrix with \(a_{1}=a_{2}\). If \(b=a_{2}-a_{3}\), where \(a_{1}, a_{2}, a_{3}\) ar the columns of \(A\), then a solution to the system \(A x=b\) is

Select one:
a. \(x=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\)
(-) b . \(x=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\)
x
c. \(x=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\)
d. \(x=\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\)
```

Question 25
Correct
Mark 1.00 out of
1.00

```

If \(A\) is an \(n \times n\) matrix and the system \(A x=b\) has infinitely many solutions, then

Select one:
a. \(A\) is nonsingular
b. \(A\) has a row of zeros
c. \(A\) is symmetric
- d. \(A\) singular


The correct answer is: \(A\) singular
Question 26
Correct
Mark 1.00 out of
1.00

Let \(A\) be a \(4 \times 4\)-matrix such that \(A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\), then

Select one:
a. \(A\) is the zero matrix
( \(\mathrm{b} . A\) is singular.
\(\checkmark\)
c. The system \(A x=0\) has only one solution
d. There are elementary matrices \(E_{1}, E_{2}, \cdots, E_{k}\) such that \(A=E_{1} E_{2} \cdots E_{k}\)

The correct answer is: \(A\) is singular.
```

Question 27
Incorrect
Mark 0.00 out of
1.00

```

If \(B\) is a \(3 \times 3\) nonsingular matrix such that \(B^{3}=B\), then one of the following is always true

Select one:
a. \(B^{4}=B\).
(-) \(\mathrm{b} \cdot \operatorname{det}(B)=1\).
\(\times\)
c. \(B=0\).
d. \(B=B^{-1}\).

The correct answer is: \(B=B^{-1}\).
Question 28
Incorrect
Mark 0.00 out of
1.00

If \(A\) is a singular \(n \times n\)-matrix, \(b \in \mathbb{R}^{n}\), then the system \(A x=b\)

Select one:
a. is inconsistent
( b. has a unique solution \(\boldsymbol{x}\)
c. has infinitely many solutions.
d. has either no solution or an infinite number of solutions
```

Question }2
Correct
Mark 1.00 out of
1.00

```

Let \(A=\left(\begin{array}{llll}1 & 2 & 3 & 0 \\ 1 & 1 & 2 & 1 \\ 2 & 3 & 5 & 1\end{array}\right)\) and \(b=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)\). The system \(A x=b\)
Select one:
a. has exactly three solutions.
b. has a unique solution
- c. is inconsistent \(\checkmark\)
d. has infinitely many solutions

The correct answer is: is inconsistent
Question 30
Correct
Mark 1.00 out of
1.00

Let \((1,2,0)^{T}\) and \((2,1,1)^{T}\) be the first two columns of a \(3 \times 3\) matrix \(A\) and \((1,1,1)^{T}\) be a solution of the system \(A x=(2,1,-1)^{T}\). Then the third column of the matrix \(A\) is

Select one:
a. \((1,2,2)^{T}\).
- b. \((-1,-2,-2)^{T}\).
\(\checkmark\)
c. \((4,-1,1)^{T}\).
d. \((1,1,0)^{T}\).

The correct answer is: \((-1,-2,-2)^{T}\).
\(\leftarrow\) Announcements
Jump to...
```

 Started on Monday, 19 October 2020, 10:01 AM
 State Finished
 Completed on Monday, 19 October 2020, 10:31 AM
 Time taken 30 mins 1 sec
 Marks 23.00/25.00
 Grade 9.20 out of 10.00 (92%)
    ```

\section*{Question 1}

Correct
Mark 2.00 out of 2.00

If a matrix \(A\) is row equivalent to \(I\), then \(A\) is nonsingular.
Select one:
- a. True \(\checkmark\)
b. False

\section*{Question 2}

Correct
Mark 2.00 out
of 2.00
If a matrix \(A\) is nonsingular, then the matrix \(A^{T}\) is also nonsingular.
Select one:
- a. True \(\downarrow\)
b. False

Question 3
Correct
Mark 2.00 out
of 2.00

If \(A\) and \(B\) are \(n \times n\) nonsingular matrices, then \(A B\) is also nonsingular.
Select one:
- a. True \(\checkmark\)
b. False

Question 4
If \(A x=b\) is an overdetermined and consistent linear system, then it must have infinitely many solutions.
Correct
Mark 2.00 out
Select one:
of 2.00
a. True
© b. False

Question 5
Correct
Mark 2.00 out of 2.00

Let \(A\) be a \(3 \times 3\) matrix and suppose that \(A\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\). Then
Select one:
© a. \(A x=0<\) has infinitely many solutions
b. \(A x=(1,0,0)^{T}\) has infinitely many solutions
o. c. \(A\) is nonsingular
d. None of the above

\section*{Question 6}

If a matrix is in row echelon form, then it is also in reduced row echelon form.
Correct
Mark 2.00 out
Select one:

Question 7
Correct
Mark 3.00 out of 3.00

If \((A \mid b)=\left[\begin{array}{ccc|c}1 & 0 & 2 & 1 \\ -1 & 1 & -1 & 0 \\ -1 & 0 & \alpha & \beta\end{array}\right]\) is the augmented matrix of the system \(A x=b\). Answer the following questions.
The system has no solution if
\(\bigcirc \alpha=-2\) and \(\beta \neq-1 \vee\)
\(\bigcirc \alpha=-2\) and \(\beta=-1\)
\(\alpha \neq-2\) and \(\beta \neq-1\)
\(\alpha \neq-2\) and \(\beta=-1\)
The system has exactly one solution if
\(\bigcirc \alpha=-2\) and \(\beta=-1\)
○ \(\alpha \neq-2\)
\(\bigcirc \alpha=-2\)
\(\alpha \neq-2\) and \(\beta \neq-1\)
The system has infinitely many solutions if
\(\alpha \neq-2\) and \(\beta \neq-1\)
\(\bigcirc \alpha=-2\) and \(\beta \neq-1\)
\(\bigcirc \alpha=-2\) and \(\beta=-1\)
\(\alpha \neq-2\) and \(\beta=-1\)

\section*{Question 8}

Correct
Mark 2.00 out of 2.00

Let \(A=\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 1 & 0 \\ 1 & 8 & 1\end{array}\right]\). If we want to find the \(L U\) factorization of \(A\), then \(L=\)

Select one:
a. \(\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 2 & 1\end{array}\right]\)
b. \(\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 8 & 1\end{array}\right]\)
c. \(\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -2 & 1\end{array}\right]\)
d. \(\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -8 & 1\end{array}\right]\)

Question 9 Incorrect Mark 0.00 out of 2.00

A homogeneous system can have a nontrivial solution.

Select one:
a. True
( b. False \(\boldsymbol{x}\)

Question 10 The inverse of an elementary matrix is also an elementary matrix.
Correct
Mark 2.00 out of 2.00

Select one:
© a. Trueb. False

\section*{Question 11} If a system of linear equations is undetermined, then it must have infinitely many solutions.
Correct
Mark 2.00 out Select one:
of 2.00
- a. True
© b. False

Question 12 The sum of two \(n \times n\) nonsingular matrices is also nonsingular.
Correct
Mark 2.00 out
Select one:
- a. True
© b. False \(\downarrow\)

Started on Monday, 19 October 2020, 5:39 PM
State Finished
Completed on Monday, 19 October 2020, 5:57 PM
Time taken 18 mins 13 secs
Grade 10 out of 10 (100\%)

\section*{Question 1}

Correct
Mark 1 out of 1
If \(A B=0\), where \(A\) and \(B\) are \(n \times n\) matrices. Then

Select one:
( a. either \(A\) or \(B\) is singular
b. either \(A=0\) or \(B=0\)
c. both \(A, B\) are singular.
d. both \(A, B\) are nonsingular.

The correct answer is: either \(A\) or \(B\) is singular

If \(A, B, C\) are \(n \times n\)-matrices with \(A B=A C\), then \(B=C\)
Correct
Mark 1 out of 1
Select one:
( a. False
b. True

The correct answer is: False

\section*{Question 3}

The sum of two elementary matrices is elementary
Correct
Mark 1 out of 1
Select one:
O a. False
b. True

The correct answer is: False

\section*{Question 4}

If \(A, B\) are \(n \times n\)-symmetric matrices, then \(A B-B A\) is skew symmetric
Correct
Mark 1 out of 1
a. False
© b. True

\section*{Question 5}

Correct Mark 1 out of 1

In the square linear system \(A x=b\), if \(A\) is singular and \(b\) is a linear combination of the columns of \(A\) then the system has

Select one:
a. no solution
© b. infinitely many solutions
- c. a unique solution
od. can not tell

The correct answer is: infinitely many solutions

Question 6
Correct Mark 1 out of 1

Question 7
Correct
Mark 1 out of 1
If \(A\) is a \(3 \times 3\)-matrix and the system \(A x=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)\) has a unique solution, then the system \(A x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\)

\section*{Select one:}
a. has infinitely many solutionsb. none of the abovec. is inconsistentd. has only the zero solution.

The correct answer is: has only the zero solution.

If \((A \mid b)=\left(\begin{array}{cccc:c}1 & 2 & 1 & -1 & 0 \\ 2 & 3 & 1 & 1 & -1 \\ 0 & 1 & 1 & \alpha & \beta\end{array}\right)\), then the system is inconsistent if

Select one:
a. \(\alpha=-3\) and \(\beta=1\)b. \(\alpha \neq-3\) and \(\beta \neq 1\)c. \(\alpha=-3\) and \(\beta \neq 1\)d. \(\alpha \neq-3\) and \(\beta\) any number

The correct answer is: \(\alpha=-3\) and \(\beta \neq 1\)

Question 8
Correct Mark 1 out of 1

If \(y, z\) are solutions to \(A x=b\), then \(y-z\) is a solution of the system \(A x=0\).
Select one:
© a. Trueb. False

The correct answer is: True

Question 9
If \(A\) is a \(3 \times 4\)-matrix, and \(b=a_{2}\) (second column of \(A\) ), then a solution to the system \(A x=b\) is Correct Mark 1 out of 1

Select one:
- a. \(x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)\)
b. \(x=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\)
c. \(x=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)\)
d. \(x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)\)

Question 10 If \(B\) is a \(3 \times 3\) matrix such that \(B^{2}=B\). One of the following is always true
Correct
Mark 1 out of 1
Select one:
(c) a. \(B^{5}=B\).
b. b. \(B=0\).
c. \(B=I\).
d. \(B\) is nonsingular.

The correct answer is: \(B^{5}=B\).

Started on Sunday, 6 June 2021, 4:00 PM
State Finished
Completed on Sunday, 6 June 2021, 4:13 PM
Time taken 12 mins 56 secs
Grade 5 out of 6 ( \(83 \%\) )

\section*{Question 1}

Correct
Mark 1 out of 1

The rank of \(A=\left(\begin{array}{ccccc}1 & 4 & 1 & 2 & 1 \\ 2 & 6 & -1 & 2 & -1 \\ 3 & 10 & 0 & 4 & 0\end{array}\right)\) is
Select one:
a. 0
b. 3
C. 1
- d. 2

The correct answer is: 2

\section*{Question 2}

Incorrect
Mark 0 out of 1

If \(A\) is a \(3 \times 4\) matrix, then

Select one:
a. The columns of \(A\) are linearly independent
b. The rows of \(A\) are linearly dependent
c. \(\operatorname{nullity}(A) \geq 1\)
d. \(\operatorname{Rank}(A)=3\)

The correct answer is: \(\operatorname{nullity}(A) \geq 1\)

Question 3
Correct
Mark 1 out of 1

Let \(E=\left[2+x, 1-x, x^{2}+1\right]\) be an ordered basis for \(P_{3}\). If \(p(x)=3 x^{2}+5 x+4\), then the coordinate vector of \(p(x)\) with respect to \(E\) is

Select one:
a. pmatrix 3

5
4[\end?]pmatrixb. pmatrix 3
-3
\(2[\backslash\) end? \(]\) pmatrix
c. pmatrix 3

2
\(-3[\backslash\) end?]pmatrix
- d. pmatrix 2
\(-3\)
3[\end?]pmatrix
pmatrix 2
The correct answer is: -3
\(3[\backslash\) nd? \(]\) pmatrix

Question 4
Correct
Mark 1 out of 1

If \(A\) is a \(5 \times 7\) matrix, then nullity of \(A \geq 2\).

Select one:
a. False
()b. True

Question 5
Correct
Mark 1 out of 1

If \(A\) is an \(n \times n\)-matrix and for each \(b \in \mathbb{R}^{\mathbb{0}}\) the system \(A x=b\) has a unique solution, then
Select one:
a. \(A\) is singular
b. \(A\) is nonsingular
c. \(\operatorname{nulitix}(A)=1\)
d. \(\operatorname{rank}(A)=n-1\)

The correct answer is: \(A\) is nonsingular

Question 6
Correct
Mark 1 out of 1
let \(A\) be a \(4 \times 7\)-matrix, if the row echelon form of \(A\) has 2 nonzero rows, then \(\operatorname{dim}(c o l u m n\) space of \(A\) ) is Select one:
a. 5
(b. 2
c. 3
d. 6

The correct answer is: 2

Jump to...

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-4 / General / Short Exam 1

Started on Sunday, 11 April 2021, 8:33 AM
State Finished
Completed on Sunday, 11 April 2021, 9:03 AM
Time taken 30 mins
Grade 8.00 out of 12.00 ( \(67 \%\) )

\section*{Question 1}

Incorrect
Mark 0.00 out of 1.00

If \(x_{1}, x_{2}\) are solutions to \(A x=b\), then \(x_{1}-x_{2}\) is a solution of the system \(A x=b\).

Select one:
a. False
b. True

The correct answer is: False
```

Question 2

```

Correct
Mark 1.00 out of 1.00

If \(E\) is an elementary matrix of type III, then \(\operatorname{det}(E)=-1\)
Select one:
a. False
b. True

The correct answer is: False

Question 3
Incorrect
Mark 0.00 out of 1.00

If \(A B=A C\), and \(|A| \neq 0\), then

Select one:
a. \(A=C\)
b. \(B \neq C\)
c. \(B=C\).

The correct answer is: \(B=C\).

Correct
Mark 1.00 out of 1.00

If \(A\) is a singular matrix and \(U\) is the row echelon form of \(A\), then \(\operatorname{det}(U)=\).
Select one:
a. none of the above
b. 0
c. 1
d. \(\pm 1\)

The correct answer is: 0

\section*{Question 5}

Correct
Mark 1.00 out of 1.00

If \(A\) is a symmetric \(n \times n\)-matrix and \(P\) any \(n \times n\)-matrix, then \(P^{T} A P\) is

Select one:
a. not defined
ob. symmetric
c. singular
D. not symmetric

The correct answer is: symmetric

Question 6
Correct
Mark 1.00 out of 1.00

If \(x_{1}, x_{2}\) are solutions to \(A x=b\), then \(\frac{1}{4} x_{1}+\frac{3}{4} x_{2}\) is a solution of the system \(A x=0\).
Select one:
a. False
b. True

The correct answer is: False

Question 7
Correct
Mark 1.00 out of 1.00

If \(A\) is a nonsingular and symmetric matrix, then
Select one:
a. \(A^{-1}\) is singular and symmetric
b. \(A^{-1}\) is nonsingular and symmetric
c. \(A^{-1}\) is singular and not symmetric
d. \(A^{-1}\) is nonsingular and not symmetric

The correct answer is: \(A^{-1}\) is nonsingular and symmetric

Question 8
Correct
Mark 1.00 out of 1.00
\(A=p m a t r i x 1 \&-1 \& 1\)
Let \(3 \&-2 \& 2 \quad\),then \(\operatorname{det}(A)=\)
\(-2 \& 1 \& 3[\backslash e n d ?]\) pmatrix
Select one:
a. 4
b. 8
c. 0
d. 1

The correct answer is: 4

Question 9
Incorrect
Mark 0.00 out of 1.00
\(A=p m a t r i x 1 \&-2 \& 5\)
If \(4 \&-5 \& 8\)
\(-3 \& 3 \&-3[\backslash e n d ?]\) pmatrix \(\quad b_{3}[\backslash e n d ?] p m a t r i x\) consistent if and only if

Select one:
a. \(b_{3}+b_{1}+b_{2}=0\)
b. \(b_{2}-b_{1}-b_{3}=0\)
c. \(b_{1}-b_{2}-b_{3}=0\)
d. \(b_{3}-b_{1}-b_{2}=0\)

The corect answer is: \(b_{1}-b_{2}-b_{3}=0\)

Question 10
Correct
Mark 1.00 out of 1.00

Let \((1,2,0)^{T}\) and \((2,1,1)^{T}\) be the first two columns of \(a \times 3\) matrix \(A\) and \((1,1,1)^{T}\) be a solution of the system \(A x=(4,2,5)^{T}\). Then the third column of the matrix \(A\) is

Select one:
a. \((1,-1,-4)^{T}\).b. \((1,-1,4)^{T}\).c. \((1,1,4)^{T}\).d. \((4,-1,1)^{T}\).

The correct answer is: \((1,-1,4)^{T}\).

Question 11
Correct
Mark 1.00 out of 1.00

If \(A\) is row equivalent to \(B\), then \(\operatorname{det}(A)=\operatorname{det}(B)\).

Select one:
a. True
b. False

The correct answer is: False

Question 12
Incorrect
Mark 0.00 out of 1.00

If \(A\) is a nonsingular \(n \times n\)-matrix, then
Select one:
a. The system \(A x=0\) has a nontrivial (nonzero) solutions.
b. There is an elementary matrix \(E\) such that \(A=E\).
c. \(\operatorname{det}(A)=1\)
d. There is a nonsingular matrix \(B\) such that \(A B=I\).

The correct answer is: There is a nonsingular matrix \(B\) such that \(A B=I\).

4 Quiz 3
Jump to...

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-4 / General / Quiz 3

Started on Saturday, 29 May 2021, 5:00 PM
State Finished
Completed on Saturday, 29 May 2021, 5:15 PM
Time taken 15 mins 1 sec
Grade 4 out of 6 ( \(67 \%\) )

\section*{Question 1}

Incorrect
Mark 0 out of 1

Every linearly independent set of vectors in \(\mathbb{R}^{4}\) has exactly 4 vectors.

Select one:
a. False
b. True

The correct answer is: False
```

Question 2

```

Correct
Mark 1 out of 1

If \(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\) forms a spanning set for a vector space \(V, v_{4}\) can be written as a linear combination of \(v_{1}, v_{2}\), \(v_{3}\), then
Select one:
a. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is a spanning set of \(V\).
b. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is not a spanning set of \(V\).
c. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) are linearly dependent in \(V\).
d. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) are linearly independent in \(V\).

The correct answer is: \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is a spanning set of \(V\).

Question 3
Incorrect \(\dagger\)
Mark 0 out of 1
\[
\operatorname{dim}\left(\operatorname{span}\left(x^{2}, 3+x^{2}, x^{2}+1\right)\right) \text { is }
\]

Select one:
a. 1
b. 3
c. 0
d. 2

The correct answer is: 2

Question 4
Correct
Mark 1 out of 1

If \(V\) is a vector space and \(\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}\) is a spanning set for \(V\) and \(v_{n+1} \in V\), then the set \(\left\{v_{1}, v_{2}, \cdots, v_{n+1}\right\}\) is

Select one:
a. not a spanning set.
© b. a spanning set.

The correct answer is: a spanning set.

\section*{Question 5}

Correct
Mark 1 out of 1

Let \(V\) be a vector space of dimension 4 and \(W=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}\) a set of nonzero vectors of \(V\), then Select one:
a. \(W\) is a spanning set
b. \(W\) is a basis
c. \(W\) is linearly dependent
d. \(W\) is linearly independent

The correct answer is: \(W\) is linearly dependent

Question 6
Correct
Mark 1 out of 1

The vectors \(\left\{(1,-1,1)^{T},(1,-3,2)^{T},(1,-2,0)^{T}\right\}\) in \(\mathbb{R}^{B}\) are
Select one:
a. linearly dependent
© b. linearly independent

The correct answer is: linearly independent

4Quiz 4 (6-6-2021)
Jump to..

Started on Sunday, 6 June 2021, 4:00 PM
State Finished
Completed on Sunday, 6 June 2021, 4:13 PM
Time taken 12 mins 56 secs
Grade 5 out of 6 ( \(83 \%\) )

\section*{Question 1}

Correct
Mark 1 out of 1

The rank of \(A=\left(\begin{array}{ccccc}1 & 4 & 1 & 2 & 1 \\ 2 & 6 & -1 & 2 & -1 \\ 3 & 10 & 0 & 4 & 0\end{array}\right)\) is
Select one:
a. 0
b. 3
C. 1
d. 2

The correct answer is: 2

\section*{Question 2}

Incorrect
Mark 0 out of 1

If \(A\) is a \(3 \times 4\) matrix, then

Select one:
a. The columns of \(A\) are linearly independent
b. The rows of \(A\) are linearly dependent
c. \(\operatorname{nullity}(A) \geq 1\)
d. \(R a n k(A)=3\)

The correct answer is: nullity \((A) \geq 1\)

Question 3
Correct
Mark 1 out of 1

Let \(E=\left[2+x, 1-x, x^{2}+1\right]\) be an ordered basis for \(P_{3}\).lf \(p(x)=3 x^{2}+5 x+4\), then the coordinate vector of \(p(x)\) with respect to \(E\) is

Select one:
a. pmatrix3

5
\(4[\) \end?] pmatrix
b. pmatrix 3
\(-3\)
\(2[\backslash\) end?]pmatrix
oc. pmatrix 3
2
\(-3[\backslash\) end?]pmatrix
- d. pmatrix 2
\(-3\)
\(3[\backslash\) nd? \(]\) pmatrix
pmatrix 2
The correct answer is: -3
3[ไend?]pmatrix

\section*{Question 4}

Correct
Mark 1 out of 1

If is a \(5 \times 7\) matrix, then nulity of \(A \geq 2\).
Select one:
a. False
b. True

The correct answer is: True

Question 5
Correct
Mark 1 out of 1

If \(A\) is an \(n \times n\)-matrix and for each \(b \in \mathbb{R}^{\mathbb{0}}\) the system \(A x=b\) has a unique solution, then
Select one:
a. \(A\) is singular
b. \(A\) is nonsingular
c. \(\operatorname{nulitix}(A)=1\)
d. \(\operatorname{rank}(A)=n-1\)

The correct answer is: \(A\) is nonsingular

Question 6
Correct
Mark 1 out of 1
let \(A\) be a \(4 \times 7\)-matrix, if the row echelon form of \(A\) has 2 nonzero rows, then \(\operatorname{dim}(c o l u m n\) space of \(A\) ) is Select one:
a. 5
(b. 2
c. 3
d. 6

The correct answer is: 2

Jump to...

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-Meta / General / Midterm Exam

Started on Sunday, 9 May 2021, 11:38 AM
State Finished
Completed on Sunday, 9 May 2021, 1:03 PM
Time taken 1 hour 24 mins
Grade 25 out of 32 ( \(\mathbf{7 8 \%}\) )

\section*{Question 1}

Correct
Mark 1 out of 1

If \(A\) is nonsingular and \(B\) is singular \(n \times n\)-matrices, then \(A B\) is

Select one:
a. may or may not be singular
b. singular
c. nonsingular

The correct answer is: singular

\section*{Question 2}

Correct
Mark 1 out of 1

One of the follwoing sets is a subspace of \(P_{4}\)
Select one:
a. \(S=\left\{f(x) \in P_{4}: f(0)=1\right\}\)
b. \(S=\left\{f(x) \in P_{4}: f(1)=1\right\}\)
C. \(S=\left\{f(x) \in P_{4}: f(0)=0\right.\), and \(\left.f^{\prime}(0)=2\right\}\)
d. \(S=\left\{f(x) \in P_{4}: f(1)=0\right\}\)

The correct answer is: \(S=\left\{f(x) \in P_{4}: f(1)=0\right\}\)

Question 3
Incorrect
Mark 0 out of 1

If \(A\) is a \(3 \times 3\) matrix with \(\operatorname{det}(A)=2\). Then \(\operatorname{det}(\operatorname{adj} j(A))=\)
Select one:
a. -2
b. -8 .
c. 4 .
d. 8 .

The correct answer is: 4

Question 4
Incorrect
Mark 0 out of 1

Let \(S=\left\{\begin{array}{l}\text { pmatrix } x \\ y[\backslash \text { end } ?] \text { pmatrix } \in \mathbb{R}^{2} 8 x^{2}-\mathbb{-} y^{2}=\mathbb{0}\end{array}\right\}\), then \(S\) is a subspace of \(\mathbb{R}^{2}\).
Select one:
a. True
(b. False
\[
\text { pmatrix } 1 \& 0 \&-2 \&-1 \& \mid \&-2
\]

If the row echelon form of \((A \mid b)\) is \(0 \& 1 \& 1 \&-1 \& \mid \&-1\)
the solutions is given by
Select one:
a. \(x=\) pmatrix-2- \(\alpha\)
\(1-\alpha\)
\(\alpha\)
1[\end?] pmatrix
b. \(x=p m a t r i x \alpha\)
\(2-\alpha\)
\(\alpha\)
\(\alpha[\backslash\) end?]pmatrix
© c. \(x=\) pmatrix \(-2-\alpha\)
\(-1+2 \alpha\)
\(-\alpha\)
\(\alpha[\backslash\) end?]pmatrix
od. \(x=p m a t r i x-\alpha\)
\(-2+2 \alpha\)
\(1-\alpha\)
\(\alpha[\backslash\) end?]pmatrix
\[
\begin{aligned}
& \quad x=\text { pmatrix }-\alpha \\
& \text { The correct answer is: } \\
& 1-\alpha+2 \alpha \\
& \alpha[\backslash \text { end? }] \text { pmatrix }
\end{aligned}
\]

Question 6
Correct
Mark 1 out of 1

Let \((1,2,0)^{T}\) and \((2,1,1)^{T}\) be the first two columns of a \(3 \times 3\) matrix \(A\) and \((1,1,1)^{T}\) be a solution of the system \(A x=(4,4,5)^{T}\). Then the third column of the matrix \(A\) is

Select one:
© a. \((1,1,4)^{T}\).b. \((2,1,1)^{T}\).c. \((1,-1,4)^{T}\).d. \((4,-1,1)^{T}\).

The correct answer is: \((1,1,4)^{T}\).

\section*{Question 7}

Correct
Mark 1 out of 1

\section*{pmatrix1\&1\&2}
\(\begin{aligned} \text { Let } A= & 0 \& a \& 3 \\ & 2 \& 0 \& a-1 \quad . \quad \text { Then the values of } a \text { that make } A \text { singular are }\end{aligned}\) [ไend?]pmatrix

Select one:
. a. \(a=2,3\)
b. \(a=0\)
c. \(a=1,2\)
d. \(a=1,0\)

The correct answer is: \(a=2,3\)

Question 8
Incorrect
Mark 0 out of 1

The vectors \(\left\{x+1,2 x^{2}+x+3, x^{2}+x+2\right\}\) form a spanning set for \(P_{3}\).
Select one:
a. True
b. False

The correct answer is: False

\section*{Question 9}

Correct
Mark 1 out of 1

If \(A\) is a nonsingular \(3 \times 3\)-matrix, then the reduced row echelon form of \(A\) nas no row of zeros.
Select one:
a. False
b. True

The correct answer is: True

\section*{Question 10}

Correct
Mark 1 out of 1
\((A \mid b)=\) pmatrix \(1 \&-1 \&-1 \& \mid \& 2\)
॥ \(-2 \& 3 \& 1 \& \mid \&-1\)
, then the system has infinite number of solutions if and only if
\(1 \& 1 \& \alpha \& \mid \& \beta[\backslash\) end?]pmatrix
Select one:
a. \(\alpha \neq-3\) and \(\beta \neq 8\)
b. \(\alpha \neq-3\) and \(\beta\) any number
c. \(\alpha=-3\) and \(\beta=8\)
d. \(\alpha=-3\) and \(\beta \neq 8\)

The correct answer is: \(\alpha=-3\) and \(\beta=8\)

Question 11
Incorrect
Mark 0 out of 1

In the linear system \(A x=b\).if \(b=a_{1}=a_{2}+3 a_{4}\) then the system \(A x=b\) nas infinite solutions.
Select one:
a. True
b. False

The correct answer is: True

\section*{Question 12}

Correct
Mark 1 out of 1

The adjoint of the matrix \(\binom{\) arraycc-1\&1 }{\(2 \& 4[\) end? \(] \operatorname{array}}\) is
Select one:
() a. \(\binom{\operatorname{arraycc} 4 \&-1}{-2 \&-1[\backslash e n d ?] \operatorname{array}}\)\(\binom{\) arraycc-1\&2 }{\(1 \&-4[\) end?]array }c. \(\binom{\) arraycc-1\&-1 }{\(-2 \& 4[\) lend?]array }
d. \(\binom{\) arraycc-1\&-2 }{\(-3 \&-5[\) lend?]array }

The correct answer is: \(\binom{\operatorname{arraycc} 4 \&-1}{-2 \&-1[\) end?]array }

\section*{Question 13}

Correct
Mark 1 out of 1

The product of two elementary matrices is elementary

Select one:
a. True
b. False

Question 14
Correct
Mark 1 out of 1
\({ }_{\text {If }} x_{0}\) is a solution for the nonhomogeneous system \(A x=b\) and \(x_{1}\) is a solution of the homogeneous system \(A x=0\) . Then \(x_{1}+x_{0}\) is a solution for

Select one:
a. the system \(A x=2 b\)
b. the system \(A x=b\)
c. the system \(A x=0\)
d. the system \(A x=A b\)

The correct answer is: the system \(A x=b\)

\section*{Question 15}

Correct
Mark 1 out of 1
\({ }^{\text {If }} A, B\) are \(n \times n\) nonsingular matrices, then \(A^{2}-B^{2}=(A+B)(A-B)\).
Select one:
a. True
b. False

The correct answer is: False
```

Question 16

```

Correct
Mark 1 out of 1

If \(A\) is a singular matrix, then \(A\) can be written as a product of elementary matrices.
Select one:
a. True
b. False

The correct answer is: False

Question 17
Correct
Mark 1 out of 1

\section*{\(S=\left\{A \in \mathbb{R}^{\mathcal{B} \times \mathcal{B}_{8} \mathbb{A}}\right.\) is upper triangular \(\}\) is a subspace of \(\mathbb{R}^{\mathcal{B}} \times{ }^{B}\)}

Select one:
a. True
b. False

The correct answer is: True

Question 18
Correct
Mark 1 out of 1

If \(A\) is a nonsingular \(n \times n\) matrix, \(b \in \mathbb{R}^{m}\), then
Select one:
a. The system \(A x=b\) has only two solutions
b. The system \(A x=b\) is inconsistent
c. The system \(A x=b\) has infinitely many solutions
d. The system \(A x=b\) has a unique solution

The correct answer is: The system \(\mathcal{A} \boldsymbol{X}=b\) has a unique solution

\section*{Question 19}

Correct
Mark 1 out of 1

Let \(U\) be an \(n \times n\)-matrix in reduced row echelon form and \(U \neq I\), then
Select one:
a. \(U\) is the zero matrix
b. The system \(U x=0\) has infinitely many solutions
c. The system \(\bigcup X=0\) has only the zero solution.
d. \(\operatorname{det}(U)=1\)

The correct answer is: The system \(U X=0\) has infinitely many solutions

Correct
Mark 1 out of 1
\[
x=p m a t r i x 2
\]

Select one:
a. True
b. False

The correct answer is: True

\section*{Question 21}

Incorrect
Mark 0 out of 1

The vectors \(\left\{(1,-1,-4)^{T},(1,-1,1)^{T},(1,-1,2)^{T}\right\}\) form a spanning set for \(\mathbb{R}^{B}\).
Select one:
a. False
b. True

The correct answer is: False
```

Question }2
Correct
Mark 1 out of 1

```

If \(y, z\) are solutions to \(A x=b\), then \(y-z\) is a solution of the system \(A x=0\).
Select one:
a. False
b. True

The correct answer is: True

Correct
Mark 1 out of 1

If \(E\) is an elementary matrix of type III, then \(E T\) is
Select one:
() a. an elementary matrix of type III
b. not an elementary matrix
c. an elementary matrix of type I
d. an elementary matrix of type II

The correct answer is: an elementary matrix of type III
```

Question }2

```

Correct
Mark 1 out of 1
\({ }^{\text {If }} A B=A C\), and \(|A| \neq 0\), then
Select one:
a. \(B \neq C\)
b. \(A=C\)
c. \(A=0\)
d. \(B=C\).

The correct answer is: \(B=C\).

\section*{Question 25}

Incorrect
Mark 0 out of 1

If \(A\) is a \(4 \times 3\) matrix such that \(N(A)=\{0\}\), and \(b\) can be witten as a linear combination of the columns of \(A\). then

Select one:
a. The system \(A x=b\) has exactly two solutions
b. The system \(A x=b\) is inconsistent
c. The system \(A x=b\) has infinitely many solutions
d. The system \(A x=b\) has exactly one solution

The correct answer is: The system \(\mathcal{A} \boldsymbol{x}=b\) has exactly one solution

Correct
Mark 1 out of 1

Let \(V\) be a vector space, \(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\) a spanning set for \(V\), then the vectors \(\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}\) form a spanning set for \(V\).

Select one:
- a. False
b. True

The correct answer is: False

Question 27
Correct
Mark 1 out of 1
\(A=\) pmatrix \(1 \&-1 \& 1\)
Let \(3 \&-2 \& 2 \quad\),then \(\operatorname{det}(A)=\)
\(-2 \& 3 \& 3[\backslash e n d ?] p m a t r i x\)
Select one:
a. 7
b. 6
c. 0
d. 9

The correct answer is: 6

Question 28
Correct
Mark 1 out of 1

If \(A\) is a singular matrix, then \(A^{T}\) is also singular.
Select one:
a. True
b. False

The correct answer is: True

Correct
Mark 1 out of 1

Any two \(n \times n\)-nonsingular matrices are row equivalent.

Select one:
a. True
b. False

The correct answer is: True
```

Question 30

```

Correct
Mark 1 out of 1

If \(A\) is a \(4 \times 3\)-matrix, \(b \in \mathbb{R}^{4}\), and the system \(A x=b\) is consistent, then \(A x=b\) has a unique solution.
Select one:
a. True
b. False

\section*{The correct answer is: False}
```

Question 31

```

Correct
Mark 1 out of 1

Any two \(n \times n\)-singular matrices are row equivalent.

Select one:
a. True
() b. False

The correct answer is: False

Correct
|f \((2 A)^{-1}=\) pmatrix \(3 \& 2{ }_{\text {,then }} A=\)
\(5 \& 4[\backslash\) end? \(]\) pmatrix

\section*{Select one:}
a. pmatrix \(4 \&-2\)
\(-5 \& 3[\) end? \(] p m a t r i x\)
b. pmatrix \(2 \&-1\)
\(\frac{-5}{2} \& \frac{3}{2}[\backslash\) end? \(]\) pmatrix
© c. pmatrix \(1 \& \frac{-1}{2}\)
\(\frac{-5}{4} \& \frac{3}{4}[\backslash e n d ?] p m a t r i x\)
d. \(p m a t r i x 8 \&-4\)
\(-10 \& 6[\) end? \(]\) pmatrix

The correct answer is:
pmatrix \(1 \& \frac{-1}{2}\)
\(\frac{-5}{4} \& \frac{3}{4}[\) end? \(] p m a t r i x\)
```

Jump to...

```

Announcements
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-Meta / General / Midterm Exam

```
```

 Started on Sunday, }9\mathrm{ May 2021, 11:30 AM
 State Finished
 Completed on Sunday, }9\mathrm{ May 2021, 12:50 PM
 Time taken 1 hour 20 mins
 Grade 30 out of 32 (94%)
    ```
Question 1
Correct
Mark 1 out of 1

In the \(n \times n\)-linear system \(A x=b\), if \(A\) is singular and \(b\) is a linear combination of the columns of \(A\) then the system has

Select one:a. no solutionb. infinitely many solutionsc. a unique solutiond. exactly two solutions

The correct answer is: infinitely many solutions

\section*{Question 2}

Correct
Mark 1 out of 1

If \(U, V\) are subspaces of a vector space \(W\), then
Select one:
a. \(U \cap V\) may or may not be a subspace of \(W\).b. \(U \cap V\) is a subspace of \(W\).c. \(U \cup V\) is a subspace of \(W\).

The correct answer is: \(U \cap V\) is a subspace of \(W\).
```

Question 3

```

Correct
Mark 1 out of 1

If \(A\) and \(B\) are \(n \times n\) matrices such that \(A x=B x\) for some nonzero \(x \in \mathbb{R}^{n}\). Then

\section*{Select one:}
a. \(A-B\) is nonsingular.
( b. \(A-B\) is singular.
c. \(A\) and \(B\) are singular.
d. \(A\) and \(B\) are nonsingular.

The correct answer is: \(A-B\) is singular.
```

Question 4
Correct
Mark 1 out of 1

```

Any elementary matrix is nonsingular
Select one:
- a. Trueb. False

The correct answer is: True
```

Question 5
Correct
Mark 1 out of 1

```

In the linear system \(A x=b\), if \(b=a_{1}=a_{2}+3 a_{4}\) then the system \(A x=b\) has infinite solutions.

\section*{Select one:}
a. False
(ob. True

The correct answer is: True

Question 6
Correct
Mark 1 out of 1

If the row echelon form of \((A \mid b)\) is \(\left(\begin{array}{cccc|c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 1\end{array}\right)\) then the general form of the solutions is given by
Select one:\(x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)\)
b. b. \(x=\left(\begin{array}{c}-\alpha \\ -2+2 \alpha \\ 1-\alpha \\ \alpha\end{array}\right)\)c. \(x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)\)d. \(x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{c}-\alpha \\ -2+2 \alpha \\ 1-\alpha \\ \alpha\end{array}\right)\)

\section*{Question 7}

Correct
Mark 1 out of 1

Let \(U=\left\{\binom{x}{y}: y=x+1\right\}\). Then \(U\) is a subspace of \(\mathbb{R}^{2}\)
Select one:a. Trueb. False

Question 8
Correct
Mark 1 out of 1

If \((A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 0 & 3 & 2 & 1\end{array}\right)\) is the augmented matrix of the system \(A x=b\) then the system has no solution
Select one:
© a. Trueb. False

The correct answer is: True

\section*{Question 9}

Correct
Mark 1 out of 1

If \(A=L U\) is the \(L U\)-factorization of a matrix \(A\), and \(A\) is singular, then
Select one:a. \(L\) and \(U\) are both singularb. \(L\) is singular and \(U\) is nonsigularc. \(U\) is singular and \(L\) is nonsigulard. \(L\) and \(U\) are both nonsingular

The correct answer is: \(U\) is singular and \(L\) is nonsigular
```

Question 10
Correct
Mark 1 out of 1

```

Any two \(n \times n\)-singular matrices are row equivalent.
Select one:a. Trueb. False

The correct answer is: False
```

Question }1

```

Correct
Mark 1 out of 1

The vectors \(\left\{(1,-1,1)^{T},(1,-1,2)^{T},(1,-1,1)^{T}\right\}\) form a spanning set for \(\mathbb{R}^{3}\).
Select one:
( a. Falseb. True

The correct answer is: False
```

Question 12
Correct
Mark 1 out of 1

```

If \(A\) is a \(4 \times 4\) matrix with \(\operatorname{det}(A)=-2\). Then \(\operatorname{det}(\operatorname{adj}(A))=\) Select one:
a. -2 .
(0) b. -8 .C. 8 .d. 2 .

The correct answer is: -8 .
```

Question 13
Correct
Mark 1 out of 1

```

Let \(V\) be a vector space, \(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\) a spanning set for \(V\), then the vectors \(\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}\) form a spanning set for \(V\). Select one:
(o) Falseb. True

The correct answer is: False

Question 14
Correct
Mark 1 out of 1

If \(A B=0\), where \(A\) and \(B\) are \(n \times n\) nonzero matrices. Then
Select one:
a. either \(A\) or \(B\) is nonsingularb. either \(A=0\) or \(B=0\)c. both \(A, B\) are singular.d. both \(A, B\) are nonsingular.

The correct answer is: both \(A, B\) are singular.
```

Question }1

```

Correct
Mark 1 out of 1

If \(y\), \(z\) are solutions to \(A x=b\), then \(\frac{1}{4} y+\frac{3}{4} z\) is a solution of the system \(A x=b\).
Select one:
( a. Trueb. False

The correct answer is: True

Question 16
Incorrect
Mark 0 out of 1

One of the follwoing sets is a subspace of \(P_{4}\)
Select one:a. \(S=\left\{f(x) \in P_{4}: f(0)=1\right\}\)
b. \(S=\left\{f(x) \in P_{4}: f(1)=0\right\}\)
(o c. \(S=\left\{f(x) \in P_{4}: f(0)=0\right.\), and \(\left.f^{\prime}(0)=2\right\}\)d. \(S=\left\{f(x) \in P_{4}: f(1)=1\right\}\)

The correct answer is: \(S=\left\{f(x) \in P_{4}: f(1)=0\right\}\)

Question 17
Correct
Mark 1 out of 1

If \(A\) is a singular matrix, then the system \(A x=b\) has infinite number of solutions

Select one:
( a. Falseb. True

The correct answer is: False

Question 18
Correct
Mark 1 out of 1

If \((2 A)^{-1}=\left(\begin{array}{ll}3 & 2 \\ 5 & 4\end{array}\right)\), then \(A=\)
Select one:
a. \(\left(\begin{array}{cc}8 & -4 \\ -10 & 6\end{array}\right)\)
(o). \(\left(\begin{array}{cc}1 & \frac{-1}{2} \\ \frac{-5}{4} & \frac{3}{4}\end{array}\right)\)
c. \(\left(\begin{array}{cc}4 & -2 \\ -5 & 3\end{array}\right)\)
d. \(\left(\begin{array}{cc}2 & -1 \\ \frac{-5}{2} & \frac{3}{2}\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{cc}1 & \frac{-1}{2} \\ \frac{-5}{4} & \frac{3}{4}\end{array}\right)\)
```

Question }1

```

Correct
Mark 1 out of 1

If \(A\) is a nonsingular \(3 \times 3\)-matrix, then the reduced row echelon form of \(A\) has no row of zeros.

Select one:
© a. Trueb. False

The correct answer is: True

Question 20
Correct
Mark 1 out of 1

If \(E\) is an elementary matrix of type III, then \(E^{T}\) is

Select one:a. not an elementary matrixb. an elementary matrix of type IIIc. an elementary matrix of type Id. an elementary matrix of type II

The correct answer is: an elementary matrix of type III

\section*{Question 21}

Correct
Mark 1 out of 1

Let \(A=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & a & 1 \\ 1 & 1 & 2\end{array}\right)\). the value(s) of \(a\) that make \(A\) nonsingular
Select one:a. \(a=1\)b. \(a=\frac{1}{2}\)
c. \(a \neq \frac{1}{2}\)d. \(a \neq 1\)

The correct answer is: \(a \neq 1\)

Question 22
Correct
Mark 1 out of 1

Let \(A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & 3 & 3\end{array}\right)\), then \(\operatorname{det}(A)=\)
Select one:a. 9
(0) b. 6
c. 7
d. 0

The correct answer is: 6

Question 23
Correct
Mark 1 out of 1

If \(A\) is a \(4 \times 3\)-matrix, \(b \in \mathbb{R}^{4}\), and the system \(A x=b\) is consistent, then \(A x=b\) has a unique solution. Select one:a. Falseb. True

The correct answer is: False

Question 24
Correct
Mark 1 out of 1

The adjoint of the matrix \(\left(\begin{array}{cc}-5 & -2 \\ -3 & -1\end{array}\right)\) is
Select one:
a. \(\left(\begin{array}{cc}-5 & 3 \\ 2 & -1\end{array}\right)\)
b. \(\left(\begin{array}{cc}5 & -3 \\ -2 & 1\end{array}\right)\)
© C. \(\left(\begin{array}{cc}-1 & 2 \\ 3 & -5\end{array}\right)\)d. \(\left(\begin{array}{ll}-1 & -2 \\ -3 & -5\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{cc}-1 & 2 \\ 3 & -5\end{array}\right)\)
```

Question 25

```

Incorrect
Mark 0 out of 1

The vectors \(\left\{x+1, x^{2}+2 x+1, x^{2}+x+1\right\}\) form a spanning set for \(P_{3}\).
Select one:
© a. Falseb. True

The correct answer is: True

Question 26
Correct
Mark 1 out of 1

Let \(S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x=y+1\right\}\), then \(S\) is a subspace of \(\mathbb{R}^{2}\).
Select one:
a. Trueb. False

The correct answer is: False
```

Question 27

```

Correct
Mark 1 out of 1

If \(A\) is an \(n \times n\)-symmetric matrix, then \(A^{2}\) is symmetric.

\section*{Select one:}
- a. Trueb. False

The correct answer is: True

\section*{Question 28}

Correct
Mark 1 out of 1

If \((A \mid b)=\left(\begin{array}{ccc:c}1 & -1 & -1 & 2 \\ -2 & 3 & 1 & -1 \\ 1 & 1 & \alpha & \beta\end{array}\right)\), then the system has only one solution if and only if
Select one:a. \(\alpha=-3\) and \(\beta \neq 8\)b. \(\alpha \neq-3\) and \(\beta\) any numberc. \(\alpha \neq-3\) and \(\beta \neq 8\)d. \(\alpha=-3\) and \(\beta=8\)

The correct answer is: \(\alpha \neq-3\) and \(\beta\) any number

Correct
Mark 1 out of 1

Let \((1,2,1)^{T}\) and \((2,1,1)^{T}\) be the first two columns of a \(3 \times 3\) matrix \(A\) and \((1,1,1)^{T}\) be a solution of the system \(A x=(7,2,3)^{T}\). Then the third column of the matrix \(A\) is

Select one:
a. \((-1,-2,-2)^{T}\).b. \((1,2,2)^{T}\).c. \((1,1,0)^{T}\).d. \((4,-1,1)^{T}\).

The correct answer is: \((4,-1,1)^{T}\).
```

Question 30

```
Correct

Mark 1 out of 1

If \(A\) is a nonsingular \(n \times n\) matrix, \(b \in \mathbb{R}^{n}\), then

Select one:a. The system \(A x=b\) has infinitely many solutions
© b. The system \(A x=b\) has a unique solutionc. The system \(A x=b\) is inconsistentd. The system \(A x=b\) has only two solutions

The correct answer is: The system \(A x=b\) has a unique solution
```

Question 31
Correct
Mark 1 out of 1

```

The product of two elementary matrices is elementary

Select one:
- a. Falseb. True

The correct answer is: False
```

Question 32

```

Correct
Mark 1 out of 1

Any two \(n \times n\)-nonsingular matrices are row equivalent.

Select one:
a. False
© b. True

The correct answer is: True

Jump to...
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-Meta / General / Midterm Exam

```
```

 Started on Sunday, 9 May 2021, 11:34 AM
 State Finished
 Completed on Sunday, 9 May 2021, 12:48 PM
 Time taken 1 hour 13 mins
 Grade 28 out of 32 (\(88 \%\))
    ```
Question 1
Correct
Mark 1 out of 1

If \(A\) is a symmetric \(n \times n\)-matrix and \(P\) any \(n \times n\)-matrix, then \(P^{T} A P\) is

Select one:a. singularb. not definedC. not symmetricd. symmetric

The correct answer is: symmetric
```

Question 2

```
Incorrect
Mark 0 out of 1
\((1,1,3)^{T}\) is a linear combination of the vectors \((1,2,3)^{T},(1,4,1)^{T},(2,3,1)^{T}\)
Select one:a. Trueb. False

One of the follwoing sets is a subspace of \(P_{4}\)

\section*{Select one:}
a. \(S=\left\{f(x) \in P_{4}: f(1)=0\right\}\)
b. \(S=\left\{f(x) \in P_{4}: f(0)=0\right.\), and \(\left.f^{\prime}(0)=2\right\}\)
c. \(S=\left\{f(x) \in P_{4}: f(0)=1\right\}\)d. \(S=\left\{f(x) \in P_{4}: f(1)=1\right\}\)

The correct answer is: \(S=\left\{f(x) \in P_{4}: f(1)=0\right\}\)
```

Question 4

```
Correct

Mark 1 out of 1
\[
\text { Let } U=\left\{\binom{x}{y}: y=x+1\right\} \text {. Then } U \text { is a subspace of } \mathbb{R}^{2}
\]

Select one:
© a. Falseb. True

The correct answer is: False

\section*{Question 5}

Correct
Mark 1 out of 1

If \(A\) is a \(3 \times 3\)-matrix and the system \(A x=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)\) has a unique solution, then the system \(A x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\)
Select one:a. is inconsistentb. has infinitely many solutionsc. has only the zero solution.

Question 6
Correct
Mark 1 out of 1

If \(A\) is an \(n \times n\)-symmetric matrix, then \(A^{2}\) is symmetric.

Select one:
© a. Trueb. False

The correct answer is: True
```

Question }
Incorrect
Mark O out of 1

```

If \(S\) is a subset of a vector space \(V\), and \(0 \in S\), then \(S\) is a subspace of \(V\).

Select one:
© a. Trueb. False

The correct answer is: False
```

Question }
Correct
Mark 1 out of 1

```

If \(A\) and \(B\) are singular matrices, then \(A+B\) is also singular.

\section*{Select one:}
a. True
(o) b. False

The correct answer is: False

Question 9
Correct
Mark 1 out of 1

The adjoint of the matrix \(\left(\begin{array}{cc}-2 & -1 \\ 1 & -4\end{array}\right)\) is
Select one:
a. \(\left(\begin{array}{cc}-1 & 2 \\ 4 & 1\end{array}\right)\)
b. \(\left(\begin{array}{cc}-4 & 1 \\ -1 & -2\end{array}\right)\)
c. \(\left(\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right)\)
d. \(\left(\begin{array}{cc}2 & 1 \\ -1 & 4\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{cc}-4 & 1 \\ -1 & -2\end{array}\right)\)

Question 10
Correct
Mark 1 out of 1

Let \((1,2,0)^{T}\) and \((2,1,1)^{T}\) be the first two columns of a \(3 \times 3\) matrix \(A\) and \((1,1,1)^{T}\) be a solution of the system \(A x=(4,3,5)^{T}\). Then the third column of the matrix \(A\) is

Select one:a. \((1,3,-4)^{T}\).b. \((1,-3,4)^{T}\).c. \((4,-1,1)^{T}\).d. \((1,0,4)^{T}\).

The correct answer is: \((1,0,4)^{T}\).

Question 11
Correct
Mark 1 out of 1

If \(A\) is a \(3 \times 3\) matrix such that \(\operatorname{det}(A)=2\), then \(\operatorname{det}(3 A)=6\)
Select one:a. Trueb. False

The correct answer is: False

Question 12
Correct
Mark 1 out of 1

If \(A=\left(\begin{array}{ccc}2 & 1 & -1 \\ -2 & 0 & 2 \\ 4 & 2 & 3\end{array}\right)\) then the lower triangular matrix \(L\) in the \(L U\)-facrorization of \(A\) is given by
Select one:
-
a. \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1\end{array}\right)\)b. \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ -2 & 0 & 1\end{array}\right)\)
©
c. \(L=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1\end{array}\right)\)
od
d. \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 0 & 1\end{array}\right)\)

The correct answer is: \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1\end{array}\right)\)
```

Question 13

```

Correct
Mark 1 out of 1

In the linear system \(A x=b\), if \(b=a_{1}=a_{2}+3 a_{4}\) then the system \(A x=b\) has infinite solutions.
Select one:
© a. Trueb. False

The correct answer is: True
```

Question 14
Correct
Mark 1 out of 1

```

Any two \(n \times n\)-nonsingular matrices are row equivalent.
Select one:
© a. Trueb. False

The correct answer is: True
```

Question 15
Correct
Mark 1 out of 1

```

If \(A, B\) are \(n \times n\)-skew-symmetric matrices \(\left(A\right.\) is skew symmetric if \(A^{T}=-A\) ), then \(A B+B A\) is symmetric Select one:a. Falseb. True

The correct answer is: True

Question 16
Correct
Mark 1 out of 1

Let \(A=\left(\begin{array}{cccc}1 & 2 & 3 & 0 \\ 1 & 1 & 2 & 1 \\ 2 & 3 & 5 & 1\end{array}\right)\) and \(b=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)\). The system \(A x=b\)
Select one:
a. has a unique solutionb. has infinitely many solutionsc. has exactly three solutions.
(c) d. is inconsistent

The correct answer is: is inconsistent

Question 17
Correct
Mark 1 out of 1

If \(u, v, w\) are nonzero vectors in \(\mathbb{R}^{2}\), then \(w \in \operatorname{span}(u, v)\)

Select one:a. Falseb. True

The correct answer is: False

Question 18
Correct
Mark 1 out of 1

Let \(A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & 6 & 4\end{array}\right)\), then \(\operatorname{det}(A)=\)
Select one:a. 9
( b. 10c. 0d. 5

The correct answer is: 10

Question 19
Incorrect
Mark 0 out of 1

If the row echelon form of \((A \mid b)\) is \(\left(\begin{array}{cccc:c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 1\end{array}\right)\) then the general form of the solutions is given by
Select one:\(x=\left(\begin{array}{c}-\alpha \\ -2+2 \alpha \\ 1-\alpha \\ \alpha\end{array}\right)\)b. \(x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)\)c. \(x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)\)\(x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{c}-\alpha \\ -2+2 \alpha \\ 1-\alpha \\ \alpha\end{array}\right)\)

Question 20
Correct
Mark 1 out of 1

If \(E\) is an elementary matrix then one of the following statements is false
Select one:a. \(E^{-1}\) is an elementary matrix.b. \(E\) is nonsingular.c. \(E\) is diagonal matrix.d. \(E^{T}\) is an elementary matrix.

Question 21
Correct
Mark 1 out of 1

If \(A\) is a \(3 \times 3\) matrix with \(\operatorname{det}(A)=2\). Then \(\operatorname{det}(\operatorname{adj}(A))=\)
Select one:a. -2 .b. -8 .c. 8 .d. 4 .

The correct answer is: 4.
```

Question }2

```

Correct
Mark 1 out of 1

If \(x_{0}\) is a solution for the nonhomogeneous system \(A x=b\) and \(x_{1}\) is a solution of the homogeneous system \(A x=0\). Then \(x_{1}+x_{0}\) is a solution for

Select one:
(0) a. the system \(A x=b\)b. the system \(A x=A b\)c. the system \(A x=0\)d. the system \(A x=2 b\)

The correct answer is: the system \(A x=b\)

Question 23
Correct
Mark 1 out of 1

If \((A \mid b)=\left(\begin{array}{ccc:c}1 & -1 & -1 & 2 \\ -2 & 3 & 1 & -1 \\ 1 & 1 & \alpha & \beta\end{array}\right)\), then the system is inconsistent if and only if
Select one:a. \(\alpha \neq-3\) and \(\beta\) any numberb. \(\alpha=-3\) and \(\beta \neq 8\)c. \(\alpha \neq-3\) and \(\beta \neq 8\)d. \(\alpha=-3\) and \(\beta=8\)

The correct answer is: \(\alpha=-3\) and \(\beta \neq 8\)
```

Question }2

```

Correct
Mark 1 out of 1

The vectors \(\left\{(1,-1,1)^{T},(1,-1,2)^{T},(1,-1,1)^{T}\right\}\) form a spanning set for \(\mathbb{R}^{3}\).
Select one:a. Falseb. True

The correct answer is: False

\section*{Question 25}

Correct
Mark 1 out of 1

Let \(S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x=\frac{1}{y}\right\}\), then \(S\) is a subspace of \(\mathbb{R}^{2}\).

Select one:
(o) a. Falseb. True

The correct answer is: False

Correct
Mark 1 out of 1

Let \(V\) be a vector space, \(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\) a spanning set for \(V\), and \(v \in V\), then the vectors \(\left\{v_{1}, v_{2}, \ldots, v_{n}, v\right\}\) form a spanning set for \(V\).

Select one:
© a. Trueb. False

The correct answer is: True
```

Question 27

```

Correct
Mark 1 out of 1

If \(A B=A C\), and \(|A| \neq 0\), then

Select one:a. \(A=0\)b. \(A=C\)
() c. \(B=C\).d. \(B \neq C\)

The correct answer is: \(B=C\).

\section*{Question 28}

Correct
Mark 1 out of 1

If \((A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 0 & 3 & 2 & 1\end{array}\right)\) is the augmented matrix of the system \(A x=b\) then the system has no solution
Select one:a. Trueb. False

The correct answer is: True
```

Question }2

```

Correct
Mark 1 out of 1

Let \(A\) be a \(3 \times 4\) matrix which has a row of zeros, and let \(B\) be a \(4 \times 4\) matrix, then \(A B\) has a row of zeros.

Select one:a. Falseb. True

The correct answer is: True
```

Question 30

```

Correct
Mark 1 out of 1

If \(A\) is a \(3 \times 5\) matrix, then the system \(A x=0\)
Select one:a. is inconsistentb. has only the zero solutionc. has infinitely many solutionsd. has no solution.

The correct answer is: has infinitely many solutions
```

Question 31
Correct
Mark 1 out of 1

```

If \(A B=0\), where \(A\) and \(B\) are \(n \times n\) nonzero matrices. Then

\section*{Select one:}
( a. both \(A, B\) are singular.b. either \(A\) or \(B\) is nonsingularc. either \(A=0\) or \(B=0\)d. both \(A, B\) are nonsingular.

The correct answer is: both \(A, B\) are singular.

Question 32
Correct
Mark 1 out of 1

The vectors \(\left\{x+1, x^{2}+x+3, x^{2}+x+2\right\}\) form a spanning set for \(P_{3}\).
Select one:a. Falseb. True

The correct answer is: True

Jump to...
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-3 / General / Practice ch4

```
```

 Started on Friday, 25 June 2021, 1:30 PM
 State Finished
 Completed on Friday, 25 June 2021, 1:30 PM
 Time taken 10 secs
 Marks 0.00/13.00
 Grade 0.00 out of 10.00(0%)
    ```
```

Question 1

```
Not answered
Marked out of 1.00

Let \(L\) be a linear transformation from \(R^{5}\) into \(R^{3}\)
with \(\operatorname{dim}(\operatorname{Ker}(L))=2\). Then \(\operatorname{Kerl}(L)=\{0\}\)

Select one:
True
False

The correct answer is 'False'.
```

Question 2
Not answered
Marked out of 1.00

```

If \(L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) is the
linear transformation defined by \(L\left((x, y)^{t}\right)=(x-y, x+y)^{t}\), then \((2,3)^{t}\)
is in \(\operatorname{Im} L\).

\section*{Select one:}

True
False

The correct answer is 'True'.

Question 3
Not answered
Marked out of 1.00

Let
\(L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}\) be defined by
\(L\left((x, y)^{T}\right)=\left((x-y, x y, 2 x)^{T}\right)\), then \(L\) is a linear transformation.
Select one:
True
False

The correct answer is 'False'.
```

Question 4

```

Not answered
Marked out of 1.00

Suppose that \(T: V \rightarrow W\) is a linear transformation whose
\(2 \times 2\) matrix representation \(A\), and \(\operatorname{rank}(A)=2\). Then \(T\) is one to one

Select one:
True
False

The correct answer is 'True'.
```

Question 5
Not answered
Marked out of 1.00

```

If \(L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) is the
linear transformation defined by \(L\left((x, y)^{t}\right)=(x-y, x+y)^{t}\), then \(L\) is one to one

Select one:
True
False

The correct answer is 'True'.
```

Question 6
Not answered

```
Marked out of 1.00

Let \(L\) be a linear transformation from \(R^{5}\) into \(R^{3}\)
with \(\operatorname{dim}(\operatorname{Ker}(L))=2\). Then \(\operatorname{Rang}(L)=R^{3}\)
Select one:
True
False

The correct answer is 'True'.
```

Question }
Not answered
Marked out of 1.00

```

Suppose that \(T: V \rightarrow W\) is a linear transformation whose
\(2 \times 2\) matrix representation \(A\), and \(\operatorname{rank}(A)=2\). Then \(\operatorname{Ker} T=\{0\}\) to one
Select one:
- True

The correct answer is 'True'.
```

Question }
Not answered
Marked out of 1.00

```

Suppose that \(T: V \rightarrow W\) is a linear transformation whose
\(2 \times 2\) matrix representation \(A\), and \(\operatorname{rank}(A)=2\). Then \(T\) is onto
Select one:
True
False

The correct answer is 'True'.

Question 9
Not answered
Marked out of 1.00

Suppose that \(T: V \rightarrow W\) is a linear transformation whose
\(2 \times 2\) matrix representation \(A\), and \(\operatorname{rank}(A)=2\). Then Range \(T=W\)

Select one:
True
False

The correct answer is 'True'.
```

Question 10
Not answered
Marked out of 1.00

```

Let
\(L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}\) be defined by
\(L\left((x, y)^{T}\right)=\left((x-y, 1,2 x)^{T}\right)\), then \(L\) is a linear transformation.

Select one:
- True

False

The correct answer is 'False'.
```

Question }1
Not answered
Marked out of 1.00

```

Let \(L\) be a linear transformation from \(R^{5}\) into \(R^{3}\)
with \(\operatorname{dim}(\operatorname{Ker}(L))=2\). Then \(L\) is onto

Select one:
True
False

The correct answer is 'True'.

Let \(L\) be a linear transformation from \(R^{5}\) into \(R^{3}\)
with \(\operatorname{dim}\left(K^{\prime} \operatorname{er}(L)\right)=2\). Then \(k \operatorname{erl}(L)=R^{5}\)

Select one:
True
False

The correct answer is 'False'.
```

Question }1
Not answered
Marked out of 1.00

```
\({ }^{\text {Let }} L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\) be the linear
transformation defined as \(L((a, b, c))=(a, a-b, c-b)\),
then \(\operatorname{dim}(k \operatorname{er}(L))=0\)
Select one:
True
False

The correct answer is 'True'.

4 Practice -chapter2
Jump to...
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-3 / General / Practice ch6

```
```

 Started on Monday,7 June 2021, 9:13 PM
 State Finished
 Completed on Monday,7 June 2021, 9:14 PM
 Time taken 45 secs
 Marks 13.00/21.00
 Grade 6.19 out of 10.00 (62%)
    ```
Question 1
Correct
Mark 1.00 out of 1.00

If \(A\) is a \(3 \times 3\) singular matrix with only one eigenvalue, then the characteristic equation of \(A\) is \(x^{3}=0\)

Select one:
o True \(\vee\)
False

The correct answer is 'True'.

Question 2
Correct
Mark 1.00 out of 1.00

If \(A\) is a \(3 \times 3\) matrix such that \(1,1-i\) are eigenvalues of \(A\), then trace \(A=2-i\)

\section*{Select one:}
- True
- False \(\downarrow\)

The correct answer is 'False'.

Question 3
Correct
Mark 1.00 out of 1.00

If \(\lambda\) is an eigenvalue of a square matrix \(A\) with \(\operatorname{alg}(\lambda)=n\), then \(\operatorname{gem}(\lambda)=n\).

Select one:
True
© False \(\checkmark\)

The correct answer is 'False'.
```

Question 4
Incorrect
Mark 0.00 out of 1.00

```

Let \(A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 2 & 3 & 7\end{array}\right]\), then the eigenvalues of \(A^{100}\) are \(1,-1,7\)
Select one:
© True \(\mathbf{x}\)
False

The correct answer is 'False'.
```

Question 5
Incorrect
Mark 0.00 out of 1.00

```

If \(\lambda\) is an eigenvalue of a matrix \(A\), then the system \((A-\lambda I) x=0\) has a nontrivial solution.

\section*{Select one:}

True
© False \(\boldsymbol{x}\)

The correct answer is 'True'.

Question 6
Incorrect
Mark 0.00 out of 1.00

If \(A\) is a \(3 \times 3\) matrix such that \(A x=0\) for a nonzero \(x\), then the characteristic equation of \(A\) could be \(x^{3}+x=0\)

Select one:
True
© False \(x\)

The correct answer is 'True'.
```

Question }
Correct
Mark 1.00 out of 1.00

```

Any singular matrix has 0 as an eigenvalue
Select one:
- True \(\downarrow\)

False

The correct answer is 'True'.

Question 8
Correct
Mark 1.00 out of 1.00

If \(A\) is a \(3 \times 3\) singular matrix such that \(\lambda_{1}=1-i\) is an eigenvalue of \(A\), then the other eigenvalues of \(A\) are \(0,1+i\)

Select one:
- True \(\checkmark\)

False

The correct answer is 'True'.

Question 9
Incorrect
Mark 0.00 out of 1.00

If an \(n \times n\) matrix \(A\) is singular then \(A\) must
have \(n\) linearly independent eigenvectors

Select one:
© True \(\boldsymbol{x}\)
False

The correct answer is 'False'.
```

Question 10
Incorrect
Mark 0.00 out of 1.00

```

If \(A\) is a \(3 \times 3\) singular matrix such that \(\lambda_{1}=1-i\) is an eigenvalue of \(A\), then \(A\) is diagonalizable
Select one:
- True
© False \(\boldsymbol{x}\)

The correct answer is 'True'.
```

Question 11
Incorrect
Mark 0.00 out of 1.00

```

If \(A\) is a \(3 \times 3\) singular matrix such that \(\lambda_{1}=1-i\) is an eigenvalue of \(A\), then \(\operatorname{trace}(A)=2\)
Select one:
True
© False \(\boldsymbol{x}\)

The correct answer is 'True'.
```

Question 12

```

Correct
Mark 1.00 out of 1.00

If \(A, B\) are similar matrices, then \(\operatorname{det}(A)=\operatorname{det}(B)\)

Select one:
- True \(\downarrow\)

False

The correct answer is 'True'.

\section*{Question 13}

Correct
Mark 1.00 out of 1.00

If \(A\) is a \(3 \times 3\) singular matrix such that \(\lambda_{1}=1-i\) is an eigenvalue of \(A\), then \(A\) is defective

Select one:
True
- False \(\downarrow\)

The correct answer is 'False'.
```

Question }1
Correct
Mark 1.00 out of 1.00

```

If an \(n \times n\) matrix \(A\) is nonsingular then \(A\) must have \(n\) linearly independent eigenvectors

Select one:
True
- False \(\downarrow\)

The correct answer is 'False'.

Question 15
Correct
Mark 1.00 out of 1.00
\({ }^{\text {If }} A\) is a \(3 \times 3\) singular matrix such that \(\lambda_{1}=i\) is an eigenvalue of \(A\), then the characteristic polynomial of \(A\) is \(x^{3}+x\)

Select one:
- True \(\checkmark\)
- False

The correct answer is 'True'.

Question 16
Correct
Mark 1.00 out of 1.00

If \(A\) is a \(3 \times 3\) matrix such that \(A x=0\) for a nonzero \(x\), then \(A\) is singular

Select one:
- True \(\downarrow\)

False

The correct answer is 'True'.

Question 17
Correct
Mark 1.00 out of 1.00

If \(A\) is a \(3 \times 3\) matrix such that \(1,1-i\) are eigenvalues of \(A\), then \(|A|=1-i\)

Select one:
True
- False \(\downarrow\)

The correct answer is 'False'.
```

Question 18

```

Incorrect
Mark 0.00 out of 1.00

If \(\lambda\) is a simple eigenvalue
(i.e. of algebraic multiplicity 1) of a square matrix \(A\), then \(\lambda\)
can have more than one linearly independent eigenvectors.

Select one:
© True \(\boldsymbol{x}\)
False

The correct answer is 'False'.
```

Question 19

```

Correct
Mark 1.00 out of 1.00

Any matrix has \(\square\) as an eigenvalue is singular
Select one:
- True \(\downarrow\)

False

The correct answer is 'True'.

Question 20
Correct
Mark 1.00 out of 1.00

Similar matrices have the same eigenvectors.
Select one:
True
- False \(\checkmark\)

The correct answer is 'False'.

If \(A\) is a \(3 \times 3\) singular matrix such that \(\lambda_{1}=2, \lambda_{2}=-2\) are eigenvalues of \(A\), then trace \((A)=0\)
Select one:
True
© False \(\boldsymbol{x}\)

The correct answer is 'True'.

\section*{4 Practice-chaptet3}

Jump to...
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-3 / General / Practice -chapter2

```
        State Finished
    Completed on Friday, 25 June 2021, 1:28 PM
    Time taken 1 min 4 secs
        Marks 4.00/21.00
        Grade 2.10 out of 11.00 (19\%)
```

Question 1
Incorrect
Mark 0.00 out of 1.00

```

Let \(A\) be a square and nonsingular \(n \times n\) matrix.
If \(\$|\operatorname{adj} \mathrm{~A}|=|\mathrm{A}| \$\) then \(A\) is \(2 \times 2\).

Select one:
© True \(\mathbf{x}\)
False

The correct answer is 'False'.
```

Question 2
Incorrect
Mark 0.00 out of 1.00

```

Let \(E\) be an elementary matrix of type III, then \(|E|=1\).

Select one:
True
False \(\boldsymbol{x}\)

The correct answer is 'True'.

Question 3
Correct
Mark 1.00 out of 1.00

If \(A B=A C\), and \(|A| \neq 0\), then \(B=C\).

Select one:
- True \(\downarrow\)

False

The correct answer is 'True'.
Question 4
Correct
Mark 1.00 out of 1.00

Cramer's rule is very practical in solving linear systems.

Select one:
True
- False \(\downarrow\)

The correct answer is 'False'.
```

Question 5

```

Correct
Mark 1.00 out of 1.00

If \(\operatorname{det}(A)=\operatorname{det}(B)\), then \(A=B\).

Select one:
True
© False \(\downarrow\)

The correct answer is 'False'.

Question 6
Incorrect
Mark 0.00 out of 1.00

Let \(E\) be an elementary matrix of type I , then \(|E|=1\).

Select one:
© True \(\boldsymbol{x}\)
False

The correct answer is 'False'.
```

Question 7

```

Not answered
Marked out of 1.00

If \(A\) is row equivalent to \(I\) then \(\operatorname{det}(A)=1\).

Select one:
- True

False

The correct answer is 'False'.

Question 8
Correct
Mark 1.00 out of 1.00

Let \(A, B\) be \(n \times n\) equivalent matrices. Then \(|A|=|B|\).

Select one:
True
© False \(\downarrow\)

The correct answer is 'False'.

Question 9
Not answered
Marked out of 2.00

An \(n \times n\) matrix \(A\) is invertible if

Select one:
a. \(|A| \neq 0\)
b. \(|A|=0\)c. alld. \(A x=0\) has a nonzero solution

The correct answer is: \(|A| \neq 0\)

Question 10
Not answered
Marked out of 2.00

Let \(A\) be a \(3 \times 3\) matrix such that \(A x=b\) has infinite solutions. Then

Select one:
a. \(A\) is nonsingularb. \(|A| \neq 0\)c. \(|A|=0\)d. \(A\) is row equivalent to the identity

The correct answer is: \(|A|=0\)

Question 11
Not answered
Marked out of 1.00

If \(A\) and \(B\) are invertible, then \(\operatorname{det}(A)=\operatorname{det}(B)\).

Select one:
True
False

The correct answer is 'False'.
```

Question 12

```

Not answered
Marked out of 1.00

Let \(A\) be \(3 \times 3\) matrix such that \(|A|=5\). Then \(A x=0\) has only the zero solution.

Select one:
True
False

The correct answer is 'True'.
```

Question 13
Not answered
Marked out of 1.00

```

If \(A\) is singular, then \(|\operatorname{adj}(A)| \neq 0\).

Select one:
- True

False

The correct answer is 'False'.
```

Question 14
Not answered
Marked out of 1.00

```

The adjoint method ( cofactor method) is more practical than row operations to find the inverse of a square matrix.

Select one:
True
False

The correct answer is 'False'.

If \(A\) an \(3 \times 3\) matrix such that \(A x=0\) for a nonzero \(x\), then

Select one:a. \(|A|=0\)b. \(A\) is nonsingularc. \(A\) is row equivalent to the identityd. \(|A| \neq 0\)

The correct tonseris \(|A|=0\)
```

Question 16
Not answered
Marked out of 1.00

```
\[
{ }^{\text {Let }} A \text { be } n \times n \text {. Then }|a d j(A)|=|A|
\]

Select one:
True
False

The correct answer is 'False'.

Question 17
Not answered
Marked out of 2.00

Let \(A, B\) be \(2 \times 2\) matrix \(|A|=|2 B|=4\). Then \(\left|(2 A B)^{-1}\right|=\) Select one:
-a. 4
ob. 16c. \(\frac{1}{16}\)d. 8

The correct answer is: \(\frac{1}{16}\)

Ⓢhort exam 1-Sunday 11-4-2021
Jump to...
```

 Started on Monday, 7 June 2021, 9:10 PM
 State Finished
 Completed on Monday,7 June 2021, 9:11 PM
Time taken }57\mathrm{ secs
Marks 4.00/57.00
Grade 0.70 out of 10.00 (7%)

```
Question 1
Incorrect
Mark 0.00 out of 1.00

The LU decomposition of the matrix \(\left[\begin{array}{ccc}2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9\end{array}\right]\) is

Select one:
a. \(L=\left[\begin{array}{ccc}1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ -2 & -3 & 1\end{array}\right], U=\left[\begin{array}{lll}2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8\end{array}\right]\)b. \(L=\left[\begin{array}{ccc}1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 2 & -3 & 1\end{array}\right], U=\left[\begin{array}{ccc}2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8\end{array}\right]\)
c
\[
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
2 & 3 & 1
\end{array}\right], U=\left[\begin{array}{lll}
2 & 4 & 2 \\
0 & 3 & 1 \\
0 & 0 & 8
\end{array}\right]
\]d. None

The correct answeris: \(L=\left[\begin{array}{ccc}1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 2 & -3 & 1\end{array}\right], U=\left[\begin{array}{lll}2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8\end{array}\right]\)

Question 2
Correct
Mark 1.00 out of 1.00

If \(Z_{1}\) is a solution of the non-homogeneous system \(A x=b\)
and \(z_{0}\) is a solution of the homogeneous system \(A x=0\). Then \(z_{0}+z_{1}\) is a
solution of \(A x=b\).
Select one:
© True \(\downarrow\)
- False

The correct answer is 'True'.
```

Question 3
Incorrect
Mark 0.00 out of 1.00

```

If the coefficient matrix of the system \(\mathbf{A x}=\mathbf{0}\) is nonsingular then the system has unique solution
Select one:
True
© False \(\boldsymbol{x}\)

The correct answer is 'True'.
```

Question 4
Correct
Mark 1.00 out of 1.00

```

In the linear system \(\mathbf{A x}=\mathbf{b}\), if \(b=a_{1}-a_{2}+3 a_{4}=a_{1}\) then the system has infinite solutions.

Select one:
- True \(\downarrow\)

False

The correct answer is 'True'.

Question 5
Correct
Mark 1.00 out of 1.00

If the system \(\mathbf{A x}=\mathbf{b}\) is inconsistent then \(\mathbf{b}\) is not a linear combinations of the columns of \(\boldsymbol{A}\).

Select one:
O True \(V\)
False

The correct answer is 'True'.

Question 6
Correct
Mark 1.00 out of 1.00

Let \(A\) be \(3 \times 3\) be the coefficient matrix of \(A x=0\) such that \(a_{1}=3 a_{3}\) and \(a_{1}-a_{2}+3 a_{3}=0\). Then the solutions of \(A x=0\) are of the form \(a(1,0,-3)^{t}+b(1,-1,3)^{t}\), where \(a, b \in R\).

Select one:
- True

False

The correct answer is 'True'.
```

Question }
Incorrect
Mark 0.00 out of 1.00

```

If if \(A, B, A B\) are \(n \times n\) symmetric matrices. Then \(A B=B A\).
Select one:
True
© False \(\boldsymbol{x}\)

The correct answer is 'True'.

Question 8
Not answered
Marked out of 1.00

If \(A\) is a \(4 \times 3\) matrix such that \(A x=0\) has only the trivial solution, and let \(b=\left(\begin{array}{c}0 \\ 3 \\ 2 \\ 1\end{array}\right)\), then
Select one:
a. It is possible that \(A X=b\) has infinitely many solutionsb. The system \(A X=b\) has exactly one solutionc. The system \(A X=b\) has at most one solution.d. None of the above

The corect answer is: The system \(A X=b\) has at most one solution.
```

Question }
Not answered
Marked out of 1.00

```

If \(\boldsymbol{A}, \boldsymbol{B}\) are square \(\boldsymbol{n} \times \boldsymbol{n}\) matrices and \(\mathbf{A}\) is non-singular then \(\boldsymbol{A}\) and \(\boldsymbol{B}\) are non-singular.

Select one:
True
False

The correct answer is 'True'.

Question 10
Not answered
Marked out of 1.00

Let \(A\) be \(3 \times 3\) be the coefficient matrix of \(A x=0\) such that \(a_{1}=3 a_{3}\). Then \(A\) is singular.
Select one:
True
False

The correct answer is 'True'.

Question 11
Not answered
Marked out of 1.00
॥ \(A, B\) reresurie \(n \times n\) matices, then \((A+B)(A-B)=A^{2}-B^{2}\).

\section*{Select one:}

True
False

The correct answer is 'False'.

Question 12
Not answered
Marked out of 1.00

In the linear system \(\mathbf{A x}=\mathbf{b}\), if \(\mathbf{b}\) is the first row of \(\boldsymbol{A}\) then the system has infinitely many solutions.

Select one:
True
False

The correct answer is 'False'.

Question 13
Not answered
Marked out of 1.00

Let \(A\) be \(n \times n\). Then \(A\) is nonsingular iff \(A^{t}\) is nonsingular.
Select one:
True
False

The correct answer is 'True'.

Not answered
Marked out of 1.00

Let \(A\) be \(3 \times 3\) be the coefficient matrix of \(A x=0\) such that \(a_{1}=3 a_{3}\). Then \(A x=0\) has a infinite solutions. Select one:
True
- False

The correct answer is 'True'.

Question 15
Not answered
Marked out of 1.00

If \(A B=A C \cdot A\) is non-singular, then \(B=C\).
Select one:
True
False

The correct answer is 'True'.
```

Question }1
Not answered
Marked out of 1.00

```

If \(B\) is a \(3 \times 3\) matrix such that \(B^{2}=B\). One of the following is always true
Select one:
a. \(B\) is nonsingular.
b. \(B=I\).c. \(B=B^{-1}\)d. \(B^{5}=B\).

The correct answer is: \(B^{5}=B\)

Question 17
Not answered
Marked out of 1.00

If \(z_{0}\) is a solution of the non-homogeneous system \(A x=b\)
and \(z_{1}\) is a solution of the homogeneous system \(A x=0\). Then \(z_{0}+z_{1}\) is a
solution of \(A x=b\).
Select one:
© True
- False

The correct answer is 'True'.
```

Question 18
Not answered
Marked out of 1.00
If A is symmetric and skew symmetric then $A=0$.
(A is skew symmetric if $A=-A^{T}$).
Select one:
O True

- False

```

The correct answer is 'True'.

Question 19
Not answered
Marked out of 1.00

If \(\boldsymbol{A}, \boldsymbol{B}\) are square \(\mathbf{n} \times \mathbf{n}\) matrices such that \(\boldsymbol{A} \boldsymbol{B}=\mathbf{0}\), then \(\mathbf{A}\) and \(\mathbf{B}\) are singular.

Select one:
True
False

The correct answer is 'False'.

Question 20
Not answered
Marked out of 1.00

Let \(A\) be \(n \times n\). Then \(A\) always has an \(L U\) factorization.
Select one:
- True
- False

The correct answer is 'False'.

Question 21
Not answered
Marked out of 1.00

Let \(A\) be \(3 \times 3\) be the coefficient matrix of the linear system \((A \mid b)\) such that \(A\) has two identical rows. Then
\(A x=0\) has infinite solutions.
Select one:
- True
- False

The correct answer is 'True'.
```

Question }2

```

Not answered
Not graded

What is the last two digits of your student number?

Answer:

The correct answer is: 0

Question 23
Not answered
Marked out of 1.00

If \(\boldsymbol{A}, \boldsymbol{B}\) are \(\mathbf{n} \times \mathbf{n}\) symmetric matrices then \(\boldsymbol{A} \boldsymbol{B}\) is symmetric.
Select one:
True
False

The correct answer is 'False'.

Question 24
Not answered
Marked out of 1.00

If \(\boldsymbol{A}, \boldsymbol{B}\) are square \(\boldsymbol{n} \times \boldsymbol{n}\) matrices and \(\mathbf{A}, \boldsymbol{B}\) are non-singular then \(\boldsymbol{A} \boldsymbol{B}\) is non-singular.

Select one:
True
False

The correct answer is 'True'.
```

Question }2
Not answered
Marked out of 1.00

```

The vector \((0,0,0)^{T_{\text {is a linear combination of }}}\)
the vectors \((1,2,3)^{T},(1,4,1)^{T},(2,3,1)^{T}\)
Select one:
True
False

The correct answer is 'True'.

Not answered
Marked out of 1.00

Let \(A\) be \(n \times n\). If \(A\) is nonsingular, then \(A^{t}\) is nonsingular.
Select one:
True
- False

The correct answer is 'True'.
```

Question }2
Not answered
Marked out of 1.00

```

If \(A\) is a \(4 \times 3\) matrix such that \(A x=0\) has only the zero solution,
and \(b=\left(\begin{array}{l}1 \\ 3 \\ 2 \\ 0\end{array}\right)\), then the system \(A x=b\)
Select one:a. has exactly one solutionb. is either inconsistent or has an infinite number of solutionsc. is inconsistentd. is either inconsistent or has exactly one solution.

The correct answer is: is either inconsistent or has exactly one solution.

Question 28
Not answered
Marked out of 1.00

If the row echelon form of the matrix \(\mathbf{A}\) involves a free variable, then the linear system \(\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\) has infinitely many solutions.

Select one:
- True

False

The correct answer is 'False'.

Question 29
Not answered
Marked out of 1.00

Let \(A=\left(\begin{array}{cccc}1 & 2 & 3 & 0 \\ 0 & -1 & 1 & 2 \\ 2 & 3 & 7 & 2\end{array}\right)\) be the coefficient matrix of the system \(A x=b\). If \(b \in R^{3 \text { then the system has }}\)
infinitely many solutions.
Select one:
- True

False

The correct answer is 'False'.
```

Question 30
Not answered
Marked out of 1.00

```

If \(A=\left[\begin{array}{cccc}1 & 2 & 3 & 0 \\ 0 & -1 & 1 & 0 \\ 2 & 3 & 7 & 1\end{array}\right]\) is the coefficient matrix of the linear system \(A x=b\), then for any \(b \in R^{3}\)
Select one:
a. the system is either inconsistent or it has infinite solutions.b. The system has infinite solutionsc. The system is inconsistentd. The system is consistent

The correct answer is: The system has infinite solutions
```

Question 31
Not answered
Marked out of 1.00

```
\({ }^{\text {If }} A B=A C \cdot A \neq 0\). then \(B=C\).
Select one:
True
False

The correct answer is 'False'.

If \(A B=0\), where \(A\) and \(B\) are \(n \times n\) matrices. Then
Select one:
a. both \(A, B\) are nonsingular.
ob. both \(A, B\) are singular.c. either \(A=0\) or \(B=0\)
o d. either \(A\) or \(B\) is singular.

The correct answer is: either \(A\) or \(B\) is singular.
```

Question 33
Not answered
Marked out of 1.00

```
\({ }^{\text {If }} A^{2}=I^{\text {then }}\)
Select one:
a. \(A-I\) and \(A+I\) are nonsingular.b. \(A-I\) and \(A+I\) both cannot be nonsingular.
c. \(A-I\) and \(A+I\) are singular.d. none

The correct answer is: \(A-I\) and \(A+I\) both cannot be nonsingular.

Let \(A\) be a \(4 \times 4\) matrix. If the homogeneous system \(A x=0\) has only the trivial solution then
Select one:
a. \(A\) is nonsingular.
b. \(A\) is row equivalent to \(I\).c. RREF of \(A\) is \(I\).d. all of the above.

The correct answer is: all of the above.
```

Question 35
Not answered
Marked out of 1.00

```

Assume that the last row in the row echelon form of a \(4 \times 4\) linear system is [0 \(00 a-3 \mid b-4\) ]. The system has exactly one solution if

Select one:a. \(b \neq 4\).b. \(a \neq 3\).c. \(a \neq 3\) and \(b \neq 4\).d. \(a=3 \cdot b=4\).

The correct answer is: \(a \neq 3\).

Let \(A\) be \(n \times n\). If \(A\) has an \(L U\)-factorization then \(A\) is nonsingular iff \(L\) is nonsingular.
Select one:
True
False

The correct answer is 'False'.

Question 37
Not answered
Marked out of 1.00

A homogeneous system is always consistent.

Select one:
True
False

The correct answer is 'True'.
```

Question 38
Not answered
Marked out of 1.00

```

Let \(A\) be \(3 \times 3\) be the coefficient matrix of the linear homogeous system \((A \mid b)\) such that \(A\) has two identical rows. Then \(A x=0\) has infinite solutions.

Select one:
True
False

The correct answer is 'True'.
\({ }^{\text {If }} z_{0}, z_{1}\) area solutions of the non-homogeneous system \(A x=b\). Then \(z_{0}+z_{1}\) is a solution of \(A x=b\)
Select one:
- True

False

The correct answer is 'False'.
```

Question 40
Not answered
Marked out of 1.00

```

If \(A, B, A B\) are \(n \times n\) symmetric matrices. Then \(A B=B A\).
Select one:
True
False

The correct answer is 'True'.
Question 41
Not answered
Marked out of 1.00

Let \(A, B\) be \(n \times n\) be row equivalent matrices. Then \(A\) is nonsingular iff \(B\) is nonsingular.
Select one:
True
False

The correct answer is 'True'.

Not answered
Marked out of 1.00

If the system \(\mathbf{A} \mathbf{x}=\mathbf{b}\) is inconsistent then \(\mathbf{b}\) is not a linear combinations of the columns of \(\boldsymbol{A}\).
Select one:
- True

False

The correct answer is 'True'.

Question 43
Not answered
Marked out of 1.00
\[
\begin{aligned}
& \text { If }(A \mid b)=\left(\begin{array}{ccc|c}
1 & 1 & 2 & 4 \\
2 & -1 & 2 & 6 \\
3 & 0 & 4 & 1
\end{array}\right) \text { is the Augmented matrix of the system } A x=b \text { then the system does not } \\
& \text { have infinitely many solutions. }
\end{aligned}
\]

Select one:
True
False

The correct answer is 'True'.
```

Question 44
Not answered
Marked out of 1.00

```

If \(A\) an \(3 \times 3\) matrix such that \(A x=0\) for a nonzero \(x\), then
Select one:
a. noneb. \(A\) is row equivalent to the identityc. \(A\) is nonsingulard. \(A\) is singular.

The correct answer is: \(A\) is singular.

Question 45
Not answered
Marked out of 1.00

In the linear system \(A x=0\), if \(a_{1}=a_{2}\) then the system has a unique solution.

\section*{Select one:}
- True
- False

The correct answer is 'False'.

Question 46
Not answered
Marked out of 1.00

A square matrix \(\mathbf{A}\) is nonsingular iff its \(R E F\) is the identity matrix.

Select one:
True
False

The correct answer is 'False'.

Question 47
Not answered
Marked out of 1.00

Let \(A\) be \(3 \times 3\) be the coefficient matrix of the linear homogeous system \((A \mid 0)\) such that \(A\) has two identical rows.
Then \(A x=0\) has a unique solution.
Select one:
True
False

The correct answer is 'False'.

Not answered
Marked out of 1.00

If the row echelon form of the matrix \(\boldsymbol{A}\) involves a free variable, then the linear system \((A \mid B)\) has infinitely many solutions.
Select one:
- True

False

The correct answer is 'False'.
```

Question49
Not answered
Marked out of 1.00

```

Let \(A\) be nonsingular. Then
Select one:
a. If \(A\) is symmetric then \(A^{-1}\) is symmetricb. If \(A\) is triangular then \(A^{-1}\) is triangularc. If \(A\) is diagonal then \(A^{-1}\) is diagonald. All of the above.

The correct answer is: All of the above.
```

Question 50
Not answered
Marked out of 1.00

```

If \(A\) and \(B\) are \(n \times n\) matrices such that \(A x=B x\) for some non zero \(x \in R^{n}\). Then
Select one:
a. \(A-B\) is singular.b. none.c. \(A\) and \(B\) are singular.d. \(A\) and \(B\) are nonsingular.

The correct answer is: \(A-B\) is singular.

Question 51
Not answered
Marked out of 1.00

Let \(A\) be \(n \times n\). If \(A\) has an \(L U\)-factorization then \(A\) is nonsingular iff \(U\) is nonsingular.
Select one:
True
False

The correct answer is 'True'.

Question 52
Not answered
Marked out of 1.00

If \(E\) is an elementary matrix then one of the following statements is not true
Select one:a. \(E\) is nonsingular.b. \(E+E^{T}\) is an elementary matrix.c. \(E^{-1 \text { is an elementary matrix. }}\)d. \(E^{T}\) is an elementary matrix.

The correct answer is: \(E+E^{T}\) is an elementary matrix.
```

Question 53
Not answered
Marked out of 1.00

```

Let \(A\) be \(3 \times 3\) be the coefficient matrix of \(A x=b\) such that \(a_{1}=3 a_{3}\) and \(a_{1}-a_{2}+3 a_{3}=b\). Then \(A x=b\) has infinite solutions.

Select one:
True
False

The correct answer is 'True'.

Not answered
Marked out of 1.00

If \(\boldsymbol{A}=\mathbf{L} \mathbf{U}\) is the \(\mathbf{L U}\)-factorization and \(\mathbf{U}\) is singular then \(\mathbf{A}\) is singular.
Select one:
- True

False

The correct answer is 'True'.

Question 55
Not answered
Marked out of 1.00

If \(z_{0}, z_{1}\) are solutions of the non-homogeneous system \(A x=b\). Then \(z_{0}+z_{1}\) is a solution of \(A x=b\)

Select one:
True
False

The correct answer is 'False'.
```

Question 56

```

Not answered
Marked out of 1.00

An \(n \times n\) matrix \(A\) is invertible if
Select one:a. there exists a matrix \(B\) such that \(A B=I\).b. \(A x=0^{\text {ha a nonzero solution }}\)c. both (a) and (b)d. none of the above

The correct answer is: there exists a matrix \(B\) such that \(A B=I\).

Question 57
Not answered
Marked out of 1.00

Let \(A\) be \(n \times n\). If \(A\) has an \(L U\) _factorization then \(A\) is row equivalent to \(U\).
Select one:
True
False

The correct answer is 'True'.

Question 58
Not answered
Marked out of 1.00

many solutions.

Select one:
True
False

The correct answer is 'True'.

Quiz5
Jump to...

\footnotetext{
Data retention summary
}
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-3 / General / Practice-chaptet3

```
    Started on Friday, 25 June 2021, 1:30 PM
        State Finished
    Completed on Friday, 25 June 2021, 1:30 PM
    Time taken 14 secs
        Marks 0.00/30.00
        Grade 0.00 out of \(32.00(0 \%)\)
Question 1
Not answered
Marked out of 1.00

The vectors \((0,0,0)^{T},(2,3,1)^{T},(2,-5,3)^{T}\) are linearly dependent.

Select one:
True
False

The correct answer is 'True'.

Question 2
Not answered
Marked out of 2.00

In a finite dimensional vector space \(V\),

Select one:a. every infinite subset of \(V\) spans \(V\)b. every infinite subset of \(V\) is linearly independent.c. every infinite subset of \(V\) is linearly dependent.d. every finite subset of \(V\) span \(V\).

The correct answer is:
every infinite subset of \(V\) is linearly dependent.

Question 3
Not answered
Marked out of 2.00

The transition matrix \(\$\) U \(\$\) from the basis \([1,2+x]\) to \([1, x-1]\) is

Select one:a. \(U=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]\)b. None\(U=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\)d. \(U=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]\)

The correct answer is:
\(U=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]\)

Question 4
Not answered
Marked out of 2.00

The rank of
\(A=\left[\begin{array}{ccccc}1 & 2 & 3 & 0 & 1 \\ 0 & -1 & 1 & 0 & 0 \\ 2 & 3 & 7 & 0 & 2\end{array}\right]\)
is

Select one:a. 4b. 3C. 2d. 1

\footnotetext{
The correct answer is: 2
}

Question 5
Not answered
Marked out of 1.00

If two vectors in a vector space \(V\) are linearly
dependent, then one of them is a scalar multiple of the other.

Select one:
True
False

The correct answer is 'True'.
```

Question 6
Not answered
Marked out of 1.00

```

Any subset of a vector space that contains the zero vector is a subspace.

Select one:
True
False

The correct answer is 'False'.
```

Question 7
Not answered
Marked out of 1.00

```

A basis for the zero vector space \(V=\{0\}\) is 0

Select one:
True
False

The correct answer is 'False'.

Question 8
Not answered
Marked out of 1.00

If \(n\) vectors span a vector space \(V\), then a collection of \(m>n\)
vectors in \(V\) is linearly dependent.

Select one:
True
False

The correct answer is 'True'.
```

Question }
Not answered
Marked out of 1.00

```

The coordinate vector of \(2+2 x\) with respect to the basis \([2 x, 4]\) is \((1,2)^{t}\)
Select one:
- True

False

The correct answer is 'False'.
```

Question }1
Not answered
Marked out of 1.00

```

Any subset of a vector space that does not contain the zero vector is not a subspace.

Select one:
True
False

The correct answer is 'True'.

Question 11
Not answered
Marked out of 2.00

The dimension of the null space of
\[
A=\left[\begin{array}{ccccc}
1 & 2 & 3 & 0 & 1 \\
0 & -1 & 1 & 0 & 0 \\
2 & 3 & 7 & 0 & 2
\end{array}\right]
\]
is

Select one:
a. 3b. 2C. 4d. 1

The correct answer is: 3

Question 12
Not answered
Marked out of 2.00

A basis for the Column space of
\[
A=\left[\begin{array}{ccccc}
1 & 2 & 3 & 0 & 1 \\
0 & -1 & 1 & 0 & 0 \\
2 & 3 & 7 & 0 & 2
\end{array}\right]
\]
is

Select one:a. \(\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\)b. Nonec. \(\left[\begin{array}{l}3 \\ 1 \\ 7\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 7\end{array}\right]\)d. \(\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 7\end{array}\right]\)

The correct answer is: \(\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 7\end{array}\right]\)

Question 13
Not answered
Marked out of 1.00

If \(A\) is an \(n \times m\) matrix, and the columns of \(A\) span \(R^{n}\) then the linear system \(A x=b\) is consistent for every \(b \in R^{n}\).

Select one:
- True

False

The correct answer is 'True'.

Let \(S\) be a finite subset of a subspace \(W\) of \(R^{n}\). Then \(S\)
is a basis for \(W\) if

Select one:a. \(S\) is linearly independentb. \(S\) spans \(W\)c. every vector in \(W\) is a linear combination of vectors in \(S\)d.

None.

The correct answer is:
None.

Let \(V\) and \(W\) be sub-spaces of \(R^{n}\) such that \(V\) is
contained in \(W\). Then

Select one:
every basis of \(W\) contains a basis of \(V\).b. \(\quad V\) and \(W\) may have the same dimension even though they need not be equalc. Noned. every basis for \(V\) can be extended to a basis for \(W\)

The correct answer is: every basis for \(V\) can be extended to a basis for \(W\)

Not answered
Marked out of 2.00

For any vector space \(V\),

Select one:a. If \(V\) is finite-dimensional, then \(V\) is a subspace of \(R^{n}\) for some positive integer \(n\)b. If \(V\) is infinite-dimensional, then every infinite subset of \(V\)
is linearly independentc. Noned.

If \(V\) is finite-dimensional, then no infinite subset of \(V\) is linearly independent.

The correct answer is:
If \(V\) is finite-dimensional, then no infinite subset of \(V\) is
linearly independent.

Question 17
Not answered
Marked out of 2.00

The dimension of the subspace \(S=\left\{(a+b+2 c, a+2 b+4 c, b+2 c)^{T}, a, b, c \in R\right\}\) is

Select one:
a. 1b. 4c. 3d. 2

The correct answer is: 2
```

Question }1
Not answered
Marked out of 1.00

```

The interval \(S=[-1,1]\) is a subspace of \(V=R\)

Select one:
True
False

The correct answer is 'False'.

An \(n \times n\) matrix \(A\) is invertible if

Select one:
a. all of the above.
b. The rows of \(A\) are lic. The columns of \(A\) are lid. \(\quad N(A)=\{\mathbf{0}\}\)

DC
The correct answer is: all of the above.
```

Question }2
Not answered
Marked out of 1.00

```

The vector space of real numbers \(R\) has infinitely many subspaces
Select one:
True
False

The correct answer is 'False'.

Let \(V=\left\{f \in P_{4}: f(0)=f(1)=0\right\}\)
1. Show \(V\) is a subspace of \(P_{4}\)
2. Find a basis for \(V\)

4 Practice ch4
Jump to...

\section*{ \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\ 为}

\(\square\)
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-1 / General / Quiz l(chapter one).

```
```

 Started on Thursday, 1 April 2021, 9:30 AM
 State Finished
 Completed on Thursday,1 April 2021, 9:45 AM
Time taken 14 mins 56 secs
Grade 6 out of 6 (100%)

```
Question 1
Correct
Mark 1 out of 1

If \(A\) is an invertible \(n \times n\) matrix, \(b \in \mathbb{R}^{n}\), then

Select one:
(o) a. The system \(A x=b\) is consistent
b. The system \(A x=b\) has infinitely many solutionsc. The system \(A x=b\) is inconsistentd. The system \(A x=b\) has only two solutions

The correct answer is: The system \(A x=b\) is consistent

\section*{Question 2}

Correct
Mark 1 out of 1

If \(y, z\) are solutions to \(A x=b\), then \(y-z\) is a solution of the system \(A x=0\).
Select one:a. Falseb. True

The correct answer is: True

Question 3
Correct
Mark 1 out of 1

Let \(A\) be a \(4 \times 3\)-matrix with \(a_{2}=a_{3}\). If \(b=a_{1}+a_{2}+a_{3}\), where \(a_{j}\) is the \(j\) th column of \(A\), then a solution to the system \(A x=b\) is

Select one:
a.
\[
x=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
\]b. \(x=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)\)c. \(x=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)\)d. \(x=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)\)

\section*{Question 4}

Correct
Mark 1 out of 1

If \(A\) and \(B\) are \(n \times n\) matrices such that \(A x=B x\) for some non zero \(x \in \mathbb{R}^{n}\). Then Select one:
( a. \(A-B\) is singular.b. \(A\) and \(B\) are nonsingular.c. \(A\) and \(B\) are singular.d. \(A, B\) are zero matrices.

The correct answer is: \(A-B\) is singular.

Question 5
Correct
Mark 1 out of 1

If \(A=\left(\begin{array}{ccc}2 & 4 & -1 \\ 4 & -2 & 0 \\ -1 & 1 & -1\end{array}\right)\) then the lower triangular matrix \(L\) in the \(L U\)-facrorization of \(A\) is given by
Select one:
\[
\text { a. } L=\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & \frac{-1}{2} & 0 \\
1 & 1 & \frac{-3}{10}
\end{array}\right)
\]
( b
b. \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ \frac{-1}{2} & \frac{-3}{10} & 1\end{array}\right)\)c. \(L=\left(\begin{array}{ccc}0 & 1 & 1 \\ 2 & 0 & 1 \\ \frac{-1}{2} & \frac{-3}{10} & 0\end{array}\right)\)
od
d. \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ \frac{1}{2} & \frac{3}{10} & 1\end{array}\right)\)

The correct answer is: \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ \frac{-1}{2} & \frac{-3}{10} & 1\end{array}\right)\)

Question 6
Correct
Mark 1 out of 1

Any two \(n \times n\)-nonsingular matrices are row equivalent.
Select one:a. Falseb. True

The correct answer is: True

Short Exam 1
Jump to...
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-1 / General / Quiz l(chapter one).

```
```

 Started on Thursday, 1 April 2021, 9:30 AM
 State Finished
 Completed on Thursday, 1 April 2021, 9:45 AM
Time taken }15\mathrm{ mins 1 sec
Grade 4 out of 6 (67%)

```
Question 1
Correct
Mark 1 out of 1

If \(A\) is a \(3 \times 3\)-matrix and the system \(A x=\left(\begin{array}{c}5 \\ 1 \\ 3\end{array}\right)\) has a unique solution, then the system \(A x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\)

Select one:
- a. has only the zero solution.
b. none of the abovec. has infinitely many solutionsd. is inconsistent

The correct answer is: has only the zero solution.
```

Question 2
Incorrect
Mark O out of 1

```

If \(A\) and \(B\) are \(n \times n\) matrices such that \(A x=B x\) for some non zero \(x \in \mathbb{R}^{n}\). Then

Select one:
a. \(A\) and \(B\) are nonsingular.
b. \(A, B\) are zero matrices.c. \(A\) and \(B\) are singular.d. \(A-B\) is singular.

The correct answer is: \(A-B\) is singular.

Question 3
Correct
Mark 1 out of 1

If \(y, z\) are solutions to \(A x=b\), then \(\frac{1}{4} y+\frac{3}{4} z\) is a solution of the system \(A x=b\).
Select one:
a. False
(a) b. True

The correct answer is: True

\section*{Question 4}

Correct
Mark 1 out of 1

Let \(A=\left(\begin{array}{cccc}1 & 2 & 3 & 0 \\ 0 & -1 & 1 & 0 \\ 2 & 4 & 0 & 1\end{array}\right)\) and \(b=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)\). The system \(A x=b\)
Select one:a. is inconsistentb. has a unique solutionc. has exactly three solutions.d. has infinitely many solutions

The correct answer is: has infinitely many solutions

\section*{Question 5}

Correct
Mark 1 out of 1

If \(A\) is a \(4 \times 4\)-matrix, \(b=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)\), and the system \(A x=b\) has a unique solution, then \(A\) is nonsingular
Select one:a. Falseb. True

The correct answer is: True

Question 6
Incorrect
Mark 0 out of 1

If \(A=\left(\begin{array}{ccc}1 & -2 & 5 \\ 4 & -5 & 8 \\ -3 & 3 & -3\end{array}\right)\) and \(b=\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)\), then the system \(A x=b\) is inconsistent if and only if
Select one:
a. \(b_{2}-b_{1}-b_{3} \neq 0\)b. \(b_{1}-b_{2}-b_{3} \neq 0\)c. \(b_{3}-b_{1}-b_{2} \neq 0\)
(od. \(b_{3}+b_{1}+b_{2} \neq 0\)
The correct onsweris \(b_{1}-b_{2}-b_{3} \neq 0\)

4Short Exam 1
Jump to...
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-3 / Quizez / Quizl

```
    Started on Tuesday, 9 March 2021, 1:41 PM
        State Finished
    Completed on Tuesday, 9 March 2021, 1:48 PM
        Time taken 7 mins 21 secs
            Marks 4.00/5.00
            Grade 8.00 out of 10.00 ( \(80 \%\) )
```

Question 1
Incorrect
Mark 0.00 out of 1.00

```

Let \(A\) be \(3 \times 3\) be the coefficient matrix of the linear homogeous system \((A \mid b)\) such that \(A\) has two identical rows. Then \(A x=0\) has infinite solutions.

Select one:
True
© False \(\mathbf{x}\)

The correct answer is 'True'.
```

Question 2
Correct
Mark 1.00 out of 1.00

```

Let \(A\) be \(3 \times 3\) be the coefficient matrix of the linear homogeous system ( \(A \mid 0\) ) such that \(A\) has two identical rows. Then \(A x=0\) has a unique solution.

Select one:
True
© False \(\downarrow\)

The correct answer is 'False'.

Question 3
Correct
Mark 1.00 out of 1.00

If the row echelon form of the matrix \(\boldsymbol{A}\) involves a free variable, then the linear system \((A \mid b)\) has infinitely many solutions.

Select one:
True
- False \(\checkmark\)

The correct answer is 'False'.
```

Question 4

```

Correct
Mark 1.00 out of 1.00

If \((A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 3 & 0 & 4 & 1\end{array}\right)\) is the Augmented matrix of a linear system, then the system does not have infinitely many
solutions.

Select one:
© True \(\checkmark\)
False

The correct answer is 'True'.
```

Question 5
Correct
Mark 1.00 out of 1.00

```

A homogeneous system is always consistent.

Select one:
- True \(V\)

False

The correct answer is 'True'.

4 Recording 7
Jump to...


为
```

cosmen

```



\(\qquad\)
\(e^{2 m}\)


seatome

Treorexed anemenes. \(\left(x^{2}+1, x^{2}-1,2\right)\)
\(-{ }^{2}\)



\(a_{0}^{4}\)



Tromeratameme 3
5




\(0 \cos \neq 1\)
\(0 . a b=1\)
\(0 . a b s\)

\(E^{=}\)




\(\Xi\)








\(\ldots\)
Trocomenamemeris Frate
\(\Xi^{\circ}\)
\(\frac{3}{2}\)
\(=-m\)
\(=\)
Troemeneasameras. Tine



\(=\)
mimamem
\(E=\)


Ob, Trou

T
0.0
\(\equiv\)
\(=1\)
\(\because 2\)
1
 －
\(\equiv\)


 \(-\) vease men antastinease
\(\qquad\)

\(\qquad\)
\(\qquad\)
\({ }^{8}\)
．
\(\qquad\)

 nis ne
 5ete minn



 \(\square\)



\(a^{-m}\)
\(\underset{y}{c}\)

\(=\)



1
Treared amemes Trion
\(\Xi_{i}\)







Treanede amemers Tion

E
Nat


\({ }^{123} 3 \times 3\) mam
yun
nreanesamemers rise
\({ }^{2}\)
\(a^{a-m}\)
\(=\)




neomenesmemer


reomeasomear
\(\sum_{n}^{0}\)

```

 Co.L(t)=n(t)+
 TMememesmememsiL(P)= =p(t)

```
\(x_{2}\)



\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Treomedememat} \\
\hline
\end{tabular}

\section*{}

```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-1 / General / Quiz 3

```
```

 Started on Saturday, 29 May 2021, 5:00 PM
 State Finished
 Completed on Saturday, 29 May 2021, 5:14 PM
Time taken 14 mins 54 secs
Grade 3 out of 6(50%)

```
Question 1
Correct
Mark 1 out of 1

Every spanning set for \(\mathbb{R}^{3}\) contains at least 3 vectors.
Select one:a. Falseb. True

The correct answer is: True
```

Question 2

```

Incorrect
Mark 0 out of 1

If \(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\) forms a spanning set for a vector space \(V, v_{4}\) can be written as a linear combination of \(v_{1}, v_{2}, v_{3}\), then
Select one:
a. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is a spanning set of \(V\).b. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) are linearly dependent in \(V\).
(c) c. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is not a spanning set of \(V\).
d. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) are linearly independent in \(V\).

The correct answer is: \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is a spanning set of \(V\).

Question 3
Incorrect
Mark 0 out of 1

The vectors \(\left\{t-1, t^{2}+2 t+1, t^{2}+t-2\right\}\) in \(P_{3}\) are

\section*{Select one:}a. linearly independent
(o) b. linearly dependent

The correct answer is: linearly independent
```

Question 4
Incorrect
Mark 0 out of 1

```
\[
\operatorname{dim}\left(\operatorname{span}\left(x^{2}, 3+x^{2}, x^{2}+1\right)\right) \text { is }
\]

Select one:a. 0
b. 3
C. 1d. 2

The correct answer is: 2
```

Question 5
Correct
Mark 1 out of 1

```

The vectors \(\{2, x, \sin x\}\) in \(C[0,2 \pi]\) are

Select one:
© a. linearly independentb. linearly dependent

The correct answer is: linearly independent

Question 6
Correct
Mark 1 out of 1

If \(\left\{v_{1}, \cdots, v_{n}\right\}\) are linearly independent and \(v\) is not in Span \(\left\{v_{1}, \cdots, v_{n}\right\}\), then \(\left\{v_{1}, \cdots, v_{n}, v\right\}\) are linearly independent. Select one:
© a. Trueb. False

The correct answer is: True

4 Quiz 4 (6-6-2021)
Jump to...
Short Exam 1 -

Data retention summary
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234 - 3 / Quizez / Quiz 3

```

Started on Thursday, 1 April 2021, 1:40 PM State Finished
Completed on Thursday, 1 April 2021, 2:03 PM
Time taken 23 mins 31 secs
Grade 11.00 out of 13.00 ( \(85 \%\) )
```

Question 1

```

Correct
Mark 1.00 out of 1.00

Let \(A\) be \(n \times n\). If \(A\) has an \(L U\)-factorization then \(A\) is row equivalent to \(U\).

Select one:
© True
False

The correct answer is 'True'.
```

Question 2
Correct
Mark 1.00 out of 1.00

```

Let \(A\) be \(n \times n\). If \(A\) has an \(L U\)-factorization then \(A\) is nonsingular iff \(L\) is nonsingular.

Select one:
True
- False \(\downarrow\)

The correct answer is 'False'.

Question 3
Correct
Mark 1.00 out of 1.00

The LU decomposition of the matrix \(\left[\begin{array}{ccc}2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9\end{array}\right]\) is
Select one:
a.
\[
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
-2 & -3 & 1
\end{array}\right], U=\left[\begin{array}{lll}
2 & 4 & 2 \\
0 & 3 & 1 \\
0 & 0 & 8
\end{array}\right]
\]
\[
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
2 & -3 & 1
\end{array}\right], U=\left[\begin{array}{lll}
2 & 4 & 2 \\
0 & 3 & 1 \\
0 & 0 & 8
\end{array}\right]
\]

○ c.
\[
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
2 & 3 & 1
\end{array}\right], U=\left[\begin{array}{lll}
2 & 4 & 2 \\
0 & 3 & 1 \\
0 & 0 & 8
\end{array}\right]
\]
d. None

The correct onsweris: \(L=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & -3 & 1\end{array}\right], U=\left[\begin{array}{lll}2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8\end{array}\right]\)

\section*{Question 4}

Correct
Mark 1.00 out of 1.00

If \(E\) is an elementary matrix then one of the following statements is not true

\section*{Select one:}
a. \(E^{-1}\) is an elementary matrix.b. \(E+E^{T}\) is an elementary matrix.
c. \(E^{T}\) is an elementary matrix.d. \(E\) is nonsingular.

The correct answer is: \(E+E^{T}\) is an elementary matrix.

Question 5
Incorrect
Mark 0.00 out of 1.00
\({ }^{\text {If }} A^{2}=I\) then
Select one:
a. \(A-I\) and \(A+I\) are singular.
- b. \(A-I\) and \(A+I\) are nonsingular.
o c. \(A-I\) and \(A+I\) both cannot be nonsingular.
od. none

The correct answer is: \(A-I\) and \(A+I\) both cannot be nonsingular.
```

Question 6
Correct
Mark 1.00 out of 1.00

```

If \(A\) an \(3 \times 3\) matrix such that \(A x=0\) for a nonzero \(x\), then
Select one:
a. \(A\) is nonsingular
b. \(A\) is row equivalent to the identity
c. \(A\) is singular.
d. none

The correct answer is: \(A\) is singular.

\section*{Question 7}

Correct
Mark 1.00 out of 1.00

A square matrix \(\mathbf{A}\) is nonsingular iff its \(R E F\) is the identity matrix.
Select one:
True
- False \(\checkmark\)

The correct answer is 'False'.

Question 8
Incorrect
Mark 0.00 out of 1.00

Let \(A\) be \(n \times n\). If \(A\) has an \(L U\)-factorization then \(A\) is nonsingular iff \(U\) is nonsingular.
Select one:
True
© False \(\boldsymbol{x}\)

The correct answer is 'True'.

Question 9
Correct
Mark 1.00 out of 1.00

If \(A\) and \(B\) are \(n \times n\) matrices such that \(A x=B x\) for some non zero \(x \in R^{n}\). Then Select one:
- a. \(A-B\) is singular.b. none.c. \(A\) and \(B\) are nonsingular.d. \(A\) and \(B\) are singular.

The correct answer is: \(A-B\) is singular.
```

Question 10

```

Correct
Mark 1.00 out of 1.00

Let \(A\) be a \(4 \times 4\) matrix. If the homogeneous system \(A x=0\) has only the trivial solution then
Select one:
a. \(A\) is nonsingular.
b. \(A\) is row equivalent to \(I\).c. RREF of \(A\) is \(I\).d. all of the above.

The correct answer is: all of the above.

Question 11
Correct
Mark 1.00 out of 1.00

If \(\boldsymbol{A}=\mathbf{L}\) is the \(\mathbf{L U}\)-factorization and \(\mathbf{U}\) is singular then \(\mathbf{A}\) is singular.
Select one:
o True \(\checkmark\)
False

The correct answer is 'True'.

Question 12
Correct
Mark 1.00 out of 1.00

Let \(A\) be \(n \times n\). Then \(A\) always has an \(L U\) factorization.
Select one:
True
O False \(V\)

The correct answer is 'False'.
```

Question 13
Correct
Mark 1.00 out of 1.00

```

If \(\boldsymbol{A}, \boldsymbol{B}\) are square \(\mathbf{n} \times \mathbf{n}\) matrices such that \(\boldsymbol{A} \boldsymbol{B}=\mathbf{0}\), then \(\mathbf{A}\) and \(\boldsymbol{B}\) are singular.
Select one:
True
© False \(\downarrow\)

The correct answer is 'False'.

4 Quiz2
Jump to...
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-1 / General / Quiz 3

```
```

 Started on Saturday, 29 May 2021, 5:00 PM
 State Finished
 Completed on Saturday, 29 May 2021, 5:14 PM
Time taken 14 mins 30 secs
Grade 6 out of 6 (100%)

```
```

Question 1
Correct
Mark 1 out of 1

```

Let \(V\) be a vector space of dimension 4 and \(W=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}\) a set of nonzero vectors of \(V\), then Select one:
a. \(W\) is a spanning set
ob. \(W\) is a basisc. \(W\) is linearly independentd. \(W\) is linearly dependent

The correct answer is: \(W\) is linearly dependent

\section*{Question 2}

Correct
Mark 1 out of 1

If \(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\) is a basis for a vector space \(V\), then the set \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is

Select one:
(a) linearly independent and not a spanning set for \(V\).
b. linearly dependent and not a spanning set for \(V\).
c. linearly dependent and a spanning se \(\dagger\)d. linearly independent and a spanning set for \(V\).

The correct answer is: linearly independent and not a spanning set for \(V\).

Question 3
Correct
Mark 1 out of 1

If \(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\) forms a spanning set for a vector space \(V, v_{4}\) can be written as a linear combination of \(v_{1}, v_{2}, v_{3}\), then

Select one:
a. \(\left\{U_{1}, U_{2}, U_{3}\right\}\) are linearly independent in \(V\).b. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) are linearly dependent in \(V\).
c. \(\left\{U_{1}, U_{2}, U_{3}\right\}\) is a spanning set of \(V\).d. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is not a spanning set of \(V\).

The correct answer is: \(\left\{v_{1}, U_{2}, U_{3}\right\}\) is a spanning set of \(V\).
```

Question 4

```

Correct
Mark 1 out of 1

The vectors \(\left\{x+1, x^{2}-2 x-1, x^{2}-x+2\right\}\) form a basis for \(P_{3}\).
Select one:
a. False
( b. True

The correct answer is: True

\section*{Question 5}

Correct
Mark 1 out of 1
\({ }_{\text {If }} U_{1}, v_{2}, \cdots, v_{n}\) are linearly independent vectors in a vector space \(V\), and
\(c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}=0\), then \(c_{1}, c_{2}, \cdots, c_{n}\) are all zero scalars.
Select one:
a. False
b. True

The correct answer is: True

Question 6
Correct
Mark 1 out of 1
\[
\text { Let } S=\left\{\begin{array}{l}
\text { pmatrixa+b } \\
a+b \\
a+b[\backslash \text { end? }] \text { pmatrix:a,b } \in \mathbb{R}
\end{array}\right\} \text {.Then dimension of } S \text { equals }
\]

Select one:a. 2
© b. 1c. 0d. 3

The correct answer is: 1

4 Quiz 4 (6-6-2021)
Jump to...
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-1 / General / Quiz 4 (6-6-2021).

```
```

 Started on Sunday, 6 June 2021, 4:00 PM
 State Finished
 Completed on Sunday, }6\mathrm{ June 2021, 4:14 PM
Time taken 14 mins 45 secs
Grade 5.00 out of 6.00(83%)

```
Question 1
Correct
Mark 1.00 out of 1.00

The coordinate vector of \(\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)\) with respect to the ordered basis \(\left[\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)\right]\) is
Select one:
(o). \(\left(\begin{array}{c}1 \\ -4 \\ 3\end{array}\right)\)
b. \(\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\)
c. \(\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)\)
d. \(\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{c}1 \\ -4 \\ 3\end{array}\right)\)

Question 2
Correct
Mark 1.00 out of 1.00

Let \(A\) be a \(4 \times 5\)-matrix, with \(\operatorname{rank}(A)=3\). Then The rows of \(A\) are linearly independent.
Select one:
© a. Falseb. True

The correct answer is: False
```

Question 3

```

Correct
Mark 1.00 out of 1.00

If \(A=\left(\begin{array}{cccc}1 & 2 & -1 & 0 \\ -1 & -2 & 2 & 0 \\ 2 & 4 & 0 & 0\end{array}\right)\), then \(\operatorname{rank}(A)=3\).
Select one:a. Trueb. False

The correct answer is: False
```

Question 4
Incorrect
Mark 0.00 out of 1.00

```

If \(A\) is a nonzero \(5 \times 2\)-matrix and \(A x=0\) has infinitely many solutions, then \(\operatorname{rank}(A)=\) Select one:a. 5b. 3C. 1d. 2

Question 5
Correct
Mark 1.00 out of 1.00

If \(A\) is a \(4 \times 4\)-matrix, and \(A x=0\) has only the zero solution, then \(\operatorname{rank}(A)=\)

Select one:
a. 3b. 1C. 4d. 2

The correct answer is: 4
```

Question 6
Correct
Mark 1.00 out of 1.00

```

If the columns of \(A_{n \times n}\) are linearly independent and \(b \in \mathbb{R}^{n}\), then the system \(A x=b\) has Select one:a. infinitely many solutionsb. exactly 2 solutionsc. no solutiond. exactly one solution

The correct answer is: exactly one solution

Jump to...

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-1 / General / Quiz 4 (6-6-2021).
```

 Started on Sunday, 6 June 2021, 4:05 PM
 State Finished
 Completed on Sunday, }6\mathrm{ June 2021, 4:20 PM
 Time taken 14 mins 53 secs
 Grade 6.00 out of 6.00 (100%)
    ```
Question 1
Correct
Mark 1.00 out of 1.00

If \(A\) is a \(4 \times 4\)-matrix, and \(A x=0\) has only the zero solution, then \(\operatorname{rank}(A)=\)
Select one:
- a. 4
b. 1
C. 2
d. 3

The correct answer is: 4
```

Question 2

```

Correct
Mark 1.00 out of 1.00

The coordinate vector of \(8+6 x\) with respect to the basis \([2 x, 4]\) is \((3,2)^{T}\)
Select one:a. Trueb. False

The correct answer is: True

Question 3
Correct
Mark 1.00 out of 1.00

If \(A=\left(\begin{array}{cccc}1 & 2 & -1 & 0 \\ -1 & -2 & 2 & 0 \\ 2 & 4 & 0 & 0\end{array}\right)\), then \(\operatorname{rank}(A)=3\).
Select one:
a. True
(o) b. False

The correct answer is: False

Question 4
Correct
Mark 1.00 out of 1.00

If A is a \(5 \times 7\) matrix, then nullity of \(A \geq 2\).
Select one:a. Falseb. True

The correct answer is: True

\section*{Question 5}

Correct
Mark 1.00 out of 1.00

If \(A\) is an \(n \times n\)-matrix and for each \(b \in \mathrm{R}^{n}\) the system \(A x=b\) has a unique solution, then

\section*{Select one:}a. \(A\) is singularb. \(A\) is nonsingularc. \(\operatorname{nullity}(A)=1\)d. \(\operatorname{rank}(A)=n-1\)

The correct answer is: \(A\) is nonsingular

Question 6
Correct
Mark 1.00 out of 1.00

If \(A\) is a nonzero \(5 \times 2\)-matrix and \(A x=0\) has infinitely many solutions, then \(\operatorname{rank}(A)=\)
Select one:a. 2b. 3c. 1d. 5

The correct answer is: 1

Jump to...
```

 Started on Thursday, 1 April 2021, 9:30 AM
 State Finished
 Completed on Thursday, 1 April 2021, 9:45 AM
Time taken 15 mins 1 sec
Grade 5 out of 6 (83%)

```
Question 1
Correct
Mark 1 out of 1

If \(A=\left(\begin{array}{ccc}2 & 4 & -1 \\ 4 & -2 & 0 \\ -1 & 1 & -1\end{array}\right)\) then the lower triangular matrix \(L\) in the \(L U\)-facrorization of \(A\) is given by

Select one:a. \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ \frac{1}{2} & \frac{3}{10} & 1\end{array}\right)\)
b. \(L=\left(\begin{array}{ccc}0 & 1 & 1 \\ 2 & 0 & 1 \\ \frac{-1}{2} & \frac{-3}{10} & 0\end{array}\right)\)
© C .
\[
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
\frac{-1}{2} & \frac{-3}{10} & 1
\end{array}\right)
\]
od
\[
L=\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & \frac{-1}{2} & 0 \\
1 & 1 & \frac{-3}{10}
\end{array}\right)
\]

The correct answer is: \(L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ \frac{-1}{2} & \frac{-3}{10} & 1\end{array}\right)\)
```

Question 2

```

Correct
Mark 1 out of 1

If \(A\) is a singular \(3 \times 3\)-matrix, then the reduced row echelon form of \(A\) has 2 rows of zeros.

Select one:a. Falseb. True

The correct answer is: False
```

Question 3

```

Correc \(\dagger\)
Mark 1 out of 1

Assume that the last row in the reduced row echelon form of a \(4 \times 4\) linear system is \(\left[\begin{array}{cccc}0 & 0 & 0 & a-3 \mid b-4\end{array}\right]\). The system is inconsistent if

Select one:
(c) a. \(a=3\) and \(b \neq 4\).b. \(a=3, b=4\).c. \(a \neq 3\).d. \(b \neq 4\).

The correct answer is: \(a=3\) and \(b \neq 4\).
```

Question 4

```
Correct
Mark 1 out of 1

If \(A\) is a \(4 \times 4\)-matrix, \(b=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)\), and the system \(A x=b\) has a unique solution, then \(A\) is nonsingular

Select one:a. Falseb. True

The correct answer is: True
```

Question 5

```

Correct
Mark 1 out of 1

If \(A\) is an invertible \(n \times n\) matrix, \(b \in \mathbb{R}^{n}\), then

\section*{Select one:}a. The system \(A x=b\) has infinitely many solutionsb. The system \(A x=b\) is consistentc. The system \(A x=b\) has only two solutionsd. The system \(A x=b\) is inconsistent

The correct answer is: The system \(A x=b\) is consistent
```

Question 6
Incorrect
Mark 0 out of 1

```

In the linear system \(A x=0\), if \(a_{1}=a_{2}+3 a_{4}\) then \(x=\left(\begin{array}{c}-1 \\ 1 \\ 3\end{array}\right)\) is a solution to \(A x=0\).
Select one:
© a. True
b. False

The correct answer is: False
<Short Exam 1
Jump to...
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-3 / Quizez / Quiz2

```
    Started on Tuesday, 23 March 2021, 1:35 PM
        State Finished
    Completed on Tuesday, 23 March 2021, 1:54 PM
    Time taken 18 mins 56 secs
        Grade 13.00 out of 13.00 ( \(100 \%\) )
```

Question 1

```
Correct
Mark 1.00 out of 1.00

In the linear system \(A x=0\), if \(a_{1}=a_{2}\) then the system has a unique solution.

\section*{Select one:}

True
- False

The correct answer is 'False'.
```

Question 2
Correct
Mark 1.00 out of 1.00

```

If \(z_{0}\) is a solution of the non-homogeneous system \(A x=b\)
and \(z_{1}\) is a solution of the homogeneous system \(A x=0\). Then \(z_{0}+z_{1}\) is a solution of \(A x=b\).

Select one:
- True \(\sqrt{ }\)

False

The correct answer is 'True'.

Question 3
Correct
Mark 1.00 out of 1.00

Let \(A\) be \(3 \times 3\) be the coefficient matrix of \(A x=b\) such that \(a_{1}=3 a_{3}\) and \(a_{1}-a_{2}+3 a_{3}=b\). Then \(A x=b\) has infinite solutions.

Select one:
- True \(\downarrow\)

False

The correct answer is 'True'.

\section*{Question 4}

Correct
Mark 1.00 out of 1.00

If \(z_{0}, z_{1}\) area solutions of the non-homogeneous system \(A x=b\). Then \(z_{0}+z_{1}\) is a solution of \(A x=b\)

Select one:
True
O False \(\checkmark\)

The correct answer is 'False'.
```

Question 5
Correct
Mark 1.00 out of 1.00

```

Let \(A\) be \(3 \times 3\) be the coefficient matrix of \(A x=0\) such that \(a_{1}=3 a_{3}\) and \(a_{1}-a_{2}+3 a_{3}=0\). Then the solutions of \(A x=0\) are of the form \(a(1,0,-3)^{t}+b(1,-1,3)^{t}\), where \(a, b \in R\).

Select one:
© True
False

The correct answer is 'True'.

Question 6
Correct
Mark 1.00 out of 1.00

If \(A, B\) are square \(n \times n\) matrices, then \((A+B)(A-B)=A^{2}-B^{2}\).
Select one:
True
© False \(\checkmark\)

The correct answer is 'False'.

\section*{Question 7}

Correct
Mark 1.00 out of 1.00

In the linear system \(\mathbf{A x}=\mathbf{b}\), if \(b=a_{1}-a_{2}+3 a_{4}=a_{1}\) then the system has infinite solutions.

Select one:
- True \(\downarrow\)

False

The correct answer is 'True'.
```

Question 8

```

Correct
Mark 1.00 out of 1.00

If \(\boldsymbol{A}, \boldsymbol{B}\) are square \(\boldsymbol{n} \times \boldsymbol{n}\) matrices and \(\boldsymbol{A} \boldsymbol{B}\) is non-singular then \(\boldsymbol{A}\) and \(\boldsymbol{B}\) are non-singular.

Select one:
- True \(\downarrow\)

False

The correct answer is 'True'.

Question 9
Correct
Mark 1.00 out of 1.00

The vector \((0,0,0)^{T}\) is a linear combination of
the vectors \((1,2,3)^{T},(1,4,1)^{T},(2,3,1)^{T}\)
Select one:
- True \(\downarrow\)

False

The correct answer is 'True'.
```

Question 10
Correct
Mark 1.00 out of 1.00

```

If \(A B=A C, A\) is non-singular, then \(B=C\).
Select one:
O True \(V\)
False

The correct answer is 'True'.

Question 11
Correct
Mark 1.00 out of 1.00

Let \(A\) be \(n \times n\). Then \(A\) is nonsingular iff \(A^{t}\) is nonsingular.
Select one:
- True \(\downarrow\)

False

The correct answer is 'True'.
```

Question }1

```
Correct
Mark 1.00 out of 1.00

If the system \(\mathbf{A x}=\mathbf{b}\) is inconsistent then \(\mathbf{b}\) is not a linear combinations of the columns of \(\boldsymbol{A}\).

Select one:
o True \(V\)
False

The correct answer is 'True'.

Question 13
Correct
Mark 1.00 out of 1.00

Let \(A\) be \(n \times n\). If \(A\) is nonsingular, then \(A^{t}\) is nonsingular.

Select one:
o True \(V\)
False

The correct answer is 'True'.

4Quizl
Jump to...
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-1 / General / Quiz 3

```
    Started on Saturday, 29 May 2021, 5:00 PM
        State Finished
    Completed on Saturday, 29 May 2021, 5:15 PM
    Time taken 14 mins 51 secs
        Grade 5 out of 6 ( \(83 \%\) )
Question 1
Correct
Mark 1 out of 1

Let \(V\) be a vector space, \(v_{1}, v_{2}, v_{3} \in V\) such that \(v_{1}, v_{2}\) are linearly independent, \(v_{2}, v_{3}\) are linearly independent, then \(v_{1}, v_{2}, v_{3}\) are linearly independent.

Select one:
(a) False
b. True

The correct answer is: False
```

Question 2
Correct
Mark 1 out of 1

```

Let \(S=\left\{\left(\begin{array}{l}a+b \\ a+b \\ a+b\end{array}\right): a, b \in \mathbb{R}\right\}\). Then dimension of \(S\) equals
Select one:
a. 2
() b. 1
c. 0
d. 3

The correct answer is: 1
```

Question 3

```

Correct
Mark 1 out of 1

If \(V\) is a vector space and \(\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}\) is a spanning set for \(V\) and \(v_{n+1} \in V\), then the set \(\left\{v_{1}, v_{2}, \cdots, v_{n+1}\right\}\) is Select one:a. not a spanning set.b. a spanning set.

The correct answer is: a spanning set.
```

Question 4
Correc\dagger
Mark 1 out of 1

```

Every linearly independent set of vectors in \(\mathbb{R}^{4}\) has exactly 4 vectors.

Select one:
a. True
(a) b. False

The correct answer is: False
```

Question 5
Incorrect
Mark 0 out of 1

```

Which of the following is not a basis for the corresponding space

Select one:
(0) a. \(\left\{(1,-1)^{T},(2,-3)^{T}\right\} ; \mathbb{R}^{2}\)b. \(\left\{(1,-1,-1)^{T},(2,-3,0)^{T},(-1,0,2)^{T}\right\} ; \mathbb{R}^{3}\)c. \(\{x, 1-x, 2 x+3\} ; P_{3}\)d. \(\{5-x, x\} ; P_{2}\)

The correct answer is: \(\{x, 1-x, 2 x+3\} ; P_{3}\)

Question 6
Correct
Mark 1 out of 1

If \(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\) forms a spanning set for a vector space \(V, \operatorname{dim}(V)=3, v_{4}\) can be written as a linear combination of \(v_{1}, v_{2}, v_{3}\), then

Select one:
a. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) do not form a spanning set for \(V\)
© b. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is a basis for \(V\)c. \(v_{1}\) can be written as a linear combination of \(v_{2}, v_{3}, v_{4}\)d. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) are linearly dependent

The correct answer is: \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is a basis for \(V\)

Jump to...

\title{
Started on Sunday, 6 June 2021, 4:04 PM \\ State Finished \\ Completed on Sunday, 6 June 2021, 4:19 PM \\ Time taken 14 mins 25 secs \\ Grade 3.00 out of 6.00 (50\%)
}

Question 1
Incorrect
Mark 0.00 out of 1.00

Let \(E=\left[2+x, 1-x, x^{2}+1\right]\) be an ordered basis for \(P_{3}\). If \([p(x)]_{E}=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)\), then
Select one:
a. \(p(x)=3 x^{2}+x-2\)
b. \(p(x)=3 x^{2}-2 x+1\)
c. \(p(x)=3 x^{2}+3 x+3\)
(c) d. \(p(x)=x^{2}-x+5\)

The correct answer is: \(p(x)=3 x^{2}+3 x+3\)
```

Question 2
Incorrect
Mark 0.00 out of 1.00

```

If \(A\) is an \(m \times n\)-matrix, then \(\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)\).

\section*{Select one:}
a. True
ob. False
```

Question 3

```
Correct
Mark 1.00 out of 1.00

If \(A\) is an \(m \times n\) matrix, then

Select one:
( a. \(\operatorname{rank}(A) \leq \min \{m, n\}\)
b. \(\operatorname{rank}(A) \leq n\)c. \(\operatorname{rank}(A)=m=n\)d. \(\operatorname{rank}(A) \leq m\)

The correct answer is: \(\operatorname{rank}(A) \leq \min \{m, n\}\)
```

Question 4
Correct
Mark 1.00 out of 1.00

```

If \(A\) is an \(n \times n\)-matrix and for each \(b \in \mathbb{R}^{n}\) the system \(A x=b\) has a unique solution, then Select one:a. \(A\) is singularb. \(\operatorname{rank}(A)=n-1\)c. \(\operatorname{nullity}(A)=1\)d. \(A\) is nonsingular

The correct answer is: \(A\) is nonsingular
```

Question 5
Incorrect
Mark 0.00 out of 1.00

```

If \(A\) is a nonzero \(5 \times 2\)-matrix and \(A x=0\) has infinitely many solutions, then \(\operatorname{rank}(A)=\) Select one:a. 1
b. 3c. 2d. 5

Question 6
Correct
Mark 1.00 out of 1.00

The rank of \(A=\left(\begin{array}{ccccc}1 & 4 & 1 & 2 & 1 \\ 2 & 6 & -1 & 2 & -1 \\ 3 & 8 & -3 & 2 & -3\end{array}\right)\) is
Select one:
(a) 2
b. 3
c. 1
d. 0

The correct answer is: 2

Jump to...
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-3 / Quizez / Quiz5

```
    Started on Thursday, 22 April 2021, 1:25 PM
        State Finished
    Completed on Thursday, 22 April 2021, 1:25 PM
            Time taken 8 secs
            Marks 1.00/1.00
            Grade 10.00 out of 10.00 ( \(\mathbf{1 0 0 \%}\) )
Question 1
Correct
Mark 1.00 out of 1.00

The rank of a matrix \(A\) is the dimension of the row pace of \(A\).
ANSWER IS TRUE

Select one:
© True \(V\)
False

The correct answer is 'True'.

4 Quiz6-short exam2
Jump to...
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-3 / Quizez / Quiz6-short exam2

```

Started on Tuesday, 4 May 2021, 12:10 PM State Finished
Completed on Tuesday, 4 May 2021, 12:31 PM
Time taken 21 mins 32 secs
Overdue 6 mins 32 secs
```

Question 1
Incorrect
Marked out of 1.00

```

If two vectors in a vector space \(V\) are linearly
dependent, then each one of them is a scalar multiple of the other.

\section*{Select one:}
© True \(\mathbf{x}\)
False

The correct answer is 'False'.
```

Question 2

```
Correct
Marked out of 1.00

The vectors \((0,0,0)^{T},(2,3,1)^{T},(2,-5,3)^{T}\) are linearly dependent.

Select one:
© True \(\vee\)
False

The correct answer is 'True'.

Question 3
Correct
Marked out of 1.00

An \(n \times n\) matrix \(A\) is invertible if

Select one:
a. \(\quad N(A)=\{\mathbf{0}\}\)b. The columns of \(A\) are lic. The rows of \(A\) are lid. all of the above.

Your answer is correct.
The correct answer is: all of the above.
```

Question 4
Correct
Marked out of 1.00

```

Any subset of a vector space that contains the zero vector is a subspace.

Select one:
True
© False \(\checkmark\)

The correct answer is 'False'.

Question 5
Correct
Marked out of 1.00

If \(A\) is an \(n \times n\) invertible matrix, then the linear system \(A x=b\) is consistent for every \(b \in R^{n}\).
Select one:
© True \(\downarrow\)
False

The correct answer is 'True'.

Question 6
Correct
Marked out of 1.00

If \(V\) is a vector space with dimension \(n>0\), then any set of \(m\) vectors in \(V\) does not span \(V\).

Select one:
© True
False

The correct answer is 'True'.

Question 7
Correct
Marked out of 1.00

Let \(u\) and \(v\) be distinct (not equal)vectors in a vector space \(V\), and let \(B\) be a basis for \(V\). Then

Select one:a. the coordinate vector of \(u\) with respect to \(B\) equals \(u\)b. Nonec. the coordinate vector of \(u+v\) with respect to \(B\) never equals the sum of the coordinate vector of \(u\) and the coordinate vector of \(U\) with respect to \(B\).d. the coordinate vector of \(u+v\) with respect to \(B\) equals the sum of the coordinate vector of \(u\) and the coordinate vector of \(U\) with respect to \(B\).

\section*{Your answer is correct.}

The correct answer is:
the coordinate vector of \(\boldsymbol{u}+\boldsymbol{v}\) with respect to \(B\) equals the sum of the coordinate vector of \(\boldsymbol{u}\) and the coordinate vector of \(U\) with respect to \(B\).

Question 8
Correct
Marked out of 1.00

Let \(S\) be a finite subset of a subspace \(W\) of \(R^{n}\). Then \(S\)
is a basis for \(W\) if

Select one:
a. every vector in \(W\) is a linear combination of vectors in \(S\)b. \(S\) spans \(W\)
( c .
None.
d. \(S\) is linearly independent

Your answer is correct.
The correct answer is:
None.

Question 9
Correct
Marked out of 1.00

A basis for the Column space of
\[
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 0 & 1 \\
0 & -1 & 1 & 0 & 0 \\
2 & 3 & 7 & 0 & 2
\end{array}\right]
\]
is

Select one:
o. \(\left[\begin{array}{c}1 \\ 0 \\ 2[?][?]\end{array}\right]\left[\begin{array}{c}{[?][?] 3} \\ 1 \\ {[?][?] 7[?][?]}\end{array}\right]\left[\begin{array}{c}{[?][?] 0} \\ 1 \\ {[?][?] 0}\end{array}\right]\)
( -1
b. \(\left[\begin{array}{c}1 \\ 0 \\ 2[?][?]\end{array}\right]\left[\begin{array}{c}{[?][?] 3} \\ {[?][?] 7[?][?]}\end{array}\right]\)

O c. \(\left[\begin{array}{c}{[?][?] 3} \\ {[?][?] 7[?][?]}\end{array}\right]\left[\begin{array}{c}{[?][?] 3} \\ {[?][?] 7[?][?]}\end{array}\right]\)d. None

Your answer is correct.
The correct answer is: \(\left[\begin{array}{c}\frac{1}{0} \\ 2[?][?]\end{array}\right]\left[\begin{array}{c}{[?][?] 3} \\ {[?][?] 7[?][?]}\end{array}\right]\)

Question 10
Correct
Marked out of 1.00

One of the following set of vectors are linearly
independent

Select one:
oa. \((1,1,2,1,4),(2,-1,2,-1,6),(0,0,0,0,0)\)
© b.
\(x, 1, x^{2}+1\)
c. \((1,2,3),(0,1,0),(0,0,1),(1,1,1)\)
od. \((1,1,2,1,4),(2,2,4,2,8)\)

Your answer is correct.
The correct answer is:
\(x, 1, x^{2}+1\).

Question 11
Correct
Marked out of 1.00

A basis for the Row space of
\[
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 0 & 1 \\
0 & -1 & 1 & 0 & 0 \\
2 & 3 & 7 & 0 & 2
\end{array}\right]
\]
is

Select one:
a. none
-b. \(\left[\begin{array}{llll}1 & 2 & 3 & 0\end{array} 1\right.\) 1]:[?][?] \(\left.0-11100\right]\)
oc. \(\left[\begin{array}{llll}1 & 2 & 3 & 0\end{array}\right]\).

[ [?] [?] 23702 2]
od. [l?][?] \(0-11000]\)

Your answer is correct.


4 quiz4
Jump to...
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-1 / General / Quiz 3

```
```

 Started on Saturday, 29 May 2021, 5:00 PM
 State Finished
 Completed on Saturday, 29 May 2021, 5:15 PM
Time taken 14 mins 51 secs
Grade 5 out of 6 (83%)

```
Question 1
Correct
Mark 1 out of 1

Let \(V\) be a vector space, \(v_{1}, v_{2}, v_{3} \in V\) such that \(v_{1}, v_{2}\) are linearly independent, \(v_{2}, v_{3}\) are linearly independent, then \(v_{1}, v_{2}, v_{3}\) are linearly independent.

Select one:a. Falseb. True

\section*{The correct answer is: False}

\section*{Question 2}

Correct
Mark 1 out of 1

Let \(S=\left\{\left(\begin{array}{l}a+b \\ a+b \\ a+b\end{array}\right): a, b \in \mathbb{R}\right\}\). Then dimension of \(S\) equals

Select one:
a. 2
b. 1c. 0d. 3

The correct answer is: 1

If \(V\) is a vector space and \(\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}\) is a spanning set for \(V\) and \(v_{n+1} \in V\), then the set \(\left\{v_{1}, v_{2}, \cdots, v_{n+1}\right\}\) is Select one:a. not a spanning set.b. a spanning set.

The correct answer is: a spanning set.
```

Question 4
Correct
Mark 1 out of 1

```

Every linearly independent set of vectors in \(\mathbb{R}^{4}\) has exactly 4 vectors.
Select one:a. True
b. False

The correct answer is: False
```

Question 5

```
Incorrect

Mark 0 out of 1

Which of the following is not a basis for the corresponding space

Select one:
(o a. \(\left\{(1,-1)^{T},(2,-3)^{T}\right\} ; \mathbb{R}^{2}\)b. \(\left\{(1,-1,-1)^{T},(2,-3,0)^{T},(-1,0,2)^{T}\right\} ; \mathbb{R}^{3}\)c. \(\{x, 1-x, 2 x+3\} ; P_{3}\)d. \(\{5-x, x\} ; P_{2}\)

The correct answer is: \(\{x, 1-x, 2 x+3\} ; P_{3}\)

If \(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\) forms a spanning set for a vector space \(V, \operatorname{dim}(V)=3, v_{4}\) can be written as a linear combination of \(v_{1}, v_{2}, v_{3}\), then

Select one:
a. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) do not form a spanning set for \(V\)
© b. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is a basis for \(V\)c. \(v_{1}\) can be written as a linear combination of \(v_{2}, v_{3}, v_{4}\)d. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) are linearly dependent

The correct answer is: \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is a basis for \(V\)

4 Quiz 4 (6-6-2021)
Jump to...

Started on Sunday, 10 January 2021, 9:45 AM
State Finished
Completed on Sunday, 10 January 2021, 10:46 AM
Time taken 1 hour 1 min Grade 32.00 out of 32.00 (100\%)

\section*{Question 1}

Correct
Mark 1.00 out of 1.00

The transition matrix from the standard basis \(S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]\) to the ordered basis
\(U=\left[u_{1}=\binom{7}{2}, u_{2}=\binom{3}{1}\right]\) is

Select one:
a. \(T=\left(\begin{array}{ll}7 & 3 \\ 2 & 1\end{array}\right)\)
b. \(T=\left(\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right)\)
c. \(T=\left(\begin{array}{cc}-7 & 3 \\ 2 & -1\end{array}\right)\)d. \(T=\left(\begin{array}{cc}1 & -3 \\ -2 & 7\end{array}\right)\)

The correct answer is: \(T=\left(\begin{array}{cc}1 & -3 \\ -2 & 7\end{array}\right)\)
```

Question 2
Correct
Mark 1.00 out of 1.00

```

Let \(S=\{f \in C[-1,1]: f(-1)=f(1)\}\), then \(S\) is a subspace of \(C[-1,1]\).

Select one:a. Trueb. False

The correct answer is: True

The coordinate vector of \(\left(\begin{array}{l}-3 \\ -2 \\ -5\end{array}\right)\) with respect to the ordered basis \(\left[\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)\right]\) is

Select one:
- a. \(\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)\)
b. \(\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\)
c. \(\left(\begin{array}{c}1 \\ -4 \\ 3\end{array}\right)\)
d. \(\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)\)

\section*{Question 4}

Correct
Mark 1.00 out of 1.00

If \(v_{1}, v_{2}, \cdots, v_{n} \in V, \operatorname{dim}(V)=n\) and \(v_{1}, v_{2}, \cdots, v_{n}\) are linearly independent, then \(\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{n}\right)=V\),.

Select one:
© a. Trueb. False

The correct answer is: True

\section*{The coordinate vector of \(6+8 x\) with respect to the basis \([2 x, 2]\) is \((4,3)^{T}\)}

\section*{Select one:}
a. Falseb. True

The correct answer is: True
```

Question 6
Correct
Mark 1.00 out of 1.00

```

If \(f_{1}, f_{2}, \cdots, f_{n} \in C^{n-1}[a, b]\) and \(W\left[f_{1}, f_{2}, \cdots, f_{n}\right]\left(x_{0}\right) \neq 0\) for some \(x_{0} \in[a, b]\), then \(f_{1}, f_{2}, \cdots, f_{n}\) are
Select one:
a. linearly dependent
b. form a spanning set for \(C^{n-1}[a, b]\)
© c. linearly independent.

The correct answer is: linearly independent.
```

Question }
Correct
Mark 1.00 out of 1.00

```

Let \(V\) be a vector space, \(v_{1}, v_{2}, \ldots v_{n} \in V\) be linearly independent, then the vectors \(v_{1}, v_{2}, \ldots v_{n-1}\) are linearly independent.

\section*{Select one:}
a. Falseb. True

The correct answer is: True

Let \(E=\left[2+x, 1-x, x^{2}+1\right]\) be an ordered basis for \(P_{3}\). If \(p(x)=2 x^{2}+3 x+3\), then the coordinate vector of \(p(x)\) with respect to \(E\) is

Select one:
a. \(\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)\)
b. \(\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)\)
c. \(\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)\)
d. \(\left(\begin{array}{c}-2 \\ -3 \\ 2\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)\)

\section*{Question 9}

Correct
Mark 1.00 out of 1.00

\section*{\(\operatorname{dim}\left(\operatorname{span}\left(x^{2}, 3+x^{2}, x^{2}+1\right)\right)\) is}

\section*{Select one:}
a. 3
b. 0
c. 1
- d. 2

The correct answer is: 2

If \(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\) is a basis for a vector space \(V\), then the set \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is

\section*{Select one:}a. linearly independent and a spanning set for \(V\).b. linearly dependent and not a spanning set for \(V\).c. linearly independent and not a spanning set for \(V\).d. linearly dependent and a spanning set

The correct answer is: linearly independent and not a spanning set for \(V\).

\section*{Question 11}

Correct
Mark 1.00 out of 1.00

\section*{Which of the following is not a basis for the corresponding space}

Select one:
a. \(\{5-x, x-1\} ; P_{2}\)b. \(\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}\)c. \(\left\{(1,1)^{T},(2,-3)^{T}\right\} ; \mathbb{R}^{2}\)d. \(\left\{x+4,1-x^{2}, x^{2}+x+3\right\} ; P_{3}\)

The correct answer is: \(\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}\)
```

Question 12
Correct
Mark 1.00 out of 1.00

```

If \(A\) is a \(4 \times 3\) matrix such that \(N(A)=\{0\}\), and \(b\) can be written as a linear combination of the columns of \(A\), then

\section*{Select one:}a. The system \(A x=b\) is inconsistentb. The system \(A x=b\) has exactly one solutionc. The system \(A x=b\) has exactly two solutionsd. The system \(A x=b\) has infinitely many solutions

The correct answer is: The system \(A x=b\) has exactly one solution

\section*{Every linearly independent set of vectors in \(\mathbb{R}^{4}\) has exactly 4 vectors.}

\section*{Select one:}
a. True
() b. False

The correct answer is: False
```

Question 14
Correct
Mark 1.00 out of 1.00

```

If the columns of \(A_{n \times n}\) are linearly independent and \(b \in \mathbb{R}^{n}\), then the system \(A x=b\) has

\section*{Select one:}a. no solutionb. infinitely many solutionsc. exactly 2 solutionsd. exactly one solution \(\checkmark\)

The correct answer is: exactly one solution
```

Question 15
Correct
Mark 1.00 out of 1.00

```

If \(A\) is a \(3 \times 3\)-matrix, and \(A x=0\) has only the zero solution, then \(\operatorname{rank}(A)=\)
Select one:
a. 1
b. 2
c. 0

○ d. 3

The correct answer is: 3

If \(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\) forms a spanning set for a vector space \(V, \operatorname{dim}(V)=3, v_{4}\) can be written as a linear combination of \(v_{1}, v_{2}, v_{3}\), then

\section*{Select one:}
a. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is a basis for \(V\)
b. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) are linearly dependent
c. \(v_{1}\) can be written as a linear combination of \(v_{2}, v_{3}, v_{4}\)
d. \(\left\{v_{1}, v_{2}, v_{3}\right\}\) do not form a spanning set for \(V\)

The correct answer is: \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is a basis for \(V\)

Question 17
Correct
Mark 1.00 out of 1.00

The functions \(\sin x, \cos x, \sin (2 x)\) in \(C^{2}[0,2 \pi]\) are

\section*{Select one:}a. linearly dependent
© b. linearly independent

The correct answer is: linearly independent
```

Question }1
Correct
Mark 1.00 out of 1.00

```
let \(A\) be a \(4 \times 7\)-matrix, if the row echelon form of \(A\) has 2 nonzero rows, then \(\operatorname{dim}(\) column space of \(A)\) is
Select one:
a. 3
b. 5

○ c. 2
Od. 7

The correct answer is: 2

Let \(E=[2+x, 3-x], F=[x, 1]\) be ordered bases for \(P_{2}\). The transition matrix from \(E\) to \(F\) is

\section*{Select one:}
a. \(\left(\begin{array}{cc}3 & -1 \\ 2 & 1\end{array}\right)\)
b. \(\left(\begin{array}{cc}2 & 3 \\ 1 & -1\end{array}\right)\)
© c. \(\left(\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right)\)
d. \(\left(\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right)\)

\section*{Question 20}

Correct
Mark 1.00 out of 1.00

If \(T_{n \times n}\) is a transition matrix between two bases for a vector space \(V, \operatorname{dim}(V)=n>0\), then

\section*{Select one:}a. \(\operatorname{det}(T)=1\)b. \(T\) is nonsingular
c. \(\operatorname{nullity}(T)=n\)
d. \(\operatorname{rank}(T)=1\)

The correct answer is: \(T\) is nonsingular

\section*{Question 21}

Correct
Mark 1.00 out of 1.00

The vectors \(\left\{(1,-1,1)^{T},(1,-3,2)^{T},(1,-2,0)^{T}\right\}\) form a basis for \(\mathbb{R}^{3}\).

\section*{Select one:}
© a. True \(\checkmark\)b. False

The correct answer is: True

The vectors \(\left\{x+1, x^{2}+x+3, x^{2}+x+2\right\}\) form a basis for \(P_{3}\).

\section*{Select one:}
© a. True \(V\)
b. False

The correct answer is: True

Question 23
Correct
Mark 1.00 out of 1.00

Let \(S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x-y=0\right\}\), then \(S\) is a subspace of \(\mathbb{R}^{2}\).
Select one:
a. False

○. True

The correct answer is: True

\section*{Question 24}

Correct
Mark 1.00 out of 1.00

Every linearly independent set of vectors in \(\mathbb{R}^{3}\) contains at most 3 vectors.

\section*{Select one:}
© a. True \(\checkmark\)
b. False

The correct answer is: True
\[
\text { If } A=\left(\begin{array}{cccc}
1 & -2 & 1 & 0 \\
-1 & 2 & 2 & 0 \\
2 & -1 & 0 & 0
\end{array}\right) \text {, then } \operatorname{rank}(A)=3
\]

\section*{Select one:}
a. False
© b. True

The correct answer is: True

\section*{Question 26}

\section*{Correct}

Mark 1.00 out of 1.00

The rank of \(A=\left(\begin{array}{ccccc}1 & 4 & 2 & 2 & 1 \\ 2 & 6 & 1 & 2 & -1 \\ 3 & 10 & 0 & 1 & 0\end{array}\right)\) is
Select one:
a. 1
b. 2
© c. 3
d. 4

The correct answer is: 3

Question 27
Correct
Mark 1.00 out of 1.00
\[
\text { dimension of the subspace } S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{cc}
1 & 2 \\
1 & 0
\end{array}\right), A_{2}\left(\begin{array}{cc}
0 & -1 \\
1 & 3
\end{array}\right), A_{3}=\left(\begin{array}{cc}
-3 & -8 \\
-1 & 6
\end{array}\right)\right\} \text { is }
\]

\section*{Select one:}
a. 0
b. 3
() c. 2

The correct answer is: 2

\section*{If \(A, B\) are two row equivalent \(m \times n\)-matrices, then \(\operatorname{rank}(A)=\operatorname{rank}(B)\)}

\section*{Select one:}
a. False
© b. True

The correct answer is: True
```

Question }2
Correct
Mark 1.00 out of 1.00

```

If \(A\) is a \(3 \times 3\)-matrix, and \(A x=0\) has only the zero solution, then nullity \((A)=\)

Select one:
a. 3
b. 2

○ c. 0
\(\checkmark\)
d. 1

The correct answer is: 0
```

Question 30

```

Correct
Mark 1.00 out of 1.00

Let \(V\) be a vector space, \(v_{1}, v_{2}, v_{3} \in V\) such that \(v_{1}, v_{2}\) are linearly independent, \(v_{2}, v_{3}\) are linearly independent, and \(v_{1}, v_{3}\) are linearly independent, then \(v_{1}, v_{2}, v_{3}\) are linearly independent.

Select one:
a. True
() b. False

The correct answer is: False

If \(A\) is an \(m \times n\)-matrix, \(m \neq n\), then either the rows or the columns of \(A\) are linearly independent

Select one:
© a. False

The correct answer is: False

Question 32
Correct
Mark 1.00 out of 1.00

If \(A\) is an \(n \times n\) singular matrix, then
Select one:
a. \(N(A)=\{0\}\)
(b. The columns of \(A\) are linearly dependent
c. The rows of \(A\) are linearly independent
d. \(\operatorname{rank}(A)=n\)

The correct answer is: The columns of \(A\) are linearly dependent

Jump to... 会
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-1 / General / Short Exam 1

```
```

 Started on Sunday, 11 April 2021, 8:32 AM
 State Finished
 Completed on Sunday, 11 April 2021, 9:01 AM
 Time taken 28 mins 31 secs
 Grade 9.00 out of 12.00 (75%)
    ```
Question 1
Correct
Mark 1.00 out of 1.00

Let \(A, B\) are \(n \times n\)-matrices with \(A B=0\), if \(B \neq 0\), then \(A\) is nonsingular.
Select one:
© a. False
b. True

The correct answer is: False
```

Question 2

```

Correct
Mark 1.00 out of 1.00

Let \(A\) be a \(3 \times 4\) matrix, and let \(B\) be a \(4 \times 4\) matrix which has a column of zeros, then \(A B\) has a column of zeros.

Select one:a. Trueb. False

The correct answer is: True

Question 3
Correct
Mark 1.00 out of 1.00

If \(x_{1}, x_{2}\) are solutions to \(A x=b\), then \(\frac{1}{4} x_{1}+\frac{3}{4} x_{2}\) is a solution of the system \(A x=0\).
Select one:
a. True
(o) balse

The correct answer is: False

\section*{Question 4}

Incorrect
Mark 0.00 out of 1.00

Let \(A=\left(\begin{array}{cccc}1 & 2 & 3 & 0 \\ 0 & -1 & 1 & 1 \\ 2 & 5 & 5 & -1\end{array}\right)\) and \(b=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)\). The system \(A x=b\)
Select one:
a. is inconsistentb. has a unique solutionc. has exactly three solutions.d. has infinitely many solutions

The correct answer is: is inconsistent

\section*{Question 5}

Incorrect
Mark 0.00 out of 1.00

Let \((1,2,0)^{T}\) and \((2,1,1)^{T}\) be the first two columns of a \(3 \times 3\) matrix \(A\) and \((1,1,1)^{T}\) be a solution of the system \(A x=(4,2,5)^{T}\). Then the third column of the matrix \(A\) is

Select one:
a. \((4,-1,1)^{T}\).
© b. \((1,1,4)^{T}\).
c. \((1,-1,-4)^{T}\).d. \((1,-1,4)^{T}\).

The correct answer is: \((1,-1,4)^{T}\).

Question 6
Correct
Mark 1.00 out of 1.00

If \(A\) is a nonsingular and symmetric matrix, then

\section*{Select one:}
a. \(A^{-1}\) is singular and not symmetric
b. \(A^{-1}\) is singular and symmetric
© c. \(A^{-1}\) is nonsingular and symmetric
d. \(A^{-1}\) is nonsingular and not symmetric

The correct answer is: \(A^{-1}\) is nonsingular and symmetric
```

Question }
Correct
Mark 1.00 out of 1.00

```

If \(A\) is a \(3 \times 5\) matrix, then the system \(A x=0\)

Select one:a. has no nonzero solution.b. has only the zero solutionc. is inconsistentd. has infinitely many solutions

The correct answer is: has infinitely many solutions
```

Question 8
Incorrect
Mark 0.00 out of 1.00

```

If \(E\) is an elementary matrix of type III, then \(\operatorname{det}(E)=-1\)

Select one:
© a. True
b. False

The correct answer is: False

Question 9
Correct
Mark 1.00 out of 1.00

An \(n \times n\) matrix \(A\) is invertible if and only if

Select one:
(o) a. there exists a matrix \(B\) such that \(A B=I\)
b. All of the abovec. \(|A|=0\)d. \(A x=0\) has nonzero solutions

The correct answer is: there exists a matrix \(B\) such that \(A B=I\)
```

Question 10
Correct
Mark 1.00 out of 1.00

```

If \(E\) is an elementary matrix then one of the following statements is not true

Select one:
a. \(E\) is a semmetric matrix.
b. \(E^{-1}\) is an elementary matrix.c. \(E\) is nonsingular.d. \(E^{T}\) is an elementary matrix.

The correct answer is: \(E\) is a semmetric matrix.
```

Question 11
Correct
Mark 1.00 out of 1.00

```

If \(A=L U\) is the \(L U\)-factorization of a matrix \(A\), and \(A\) is singular, then

Select one:
a. \(L\) and \(U\) are both nonsingularb. \(L\) and \(U\) are both singularc. \(L\) is singular and \(U\) is nonsigular
© d. \(U\) is singular and \(L\) is nonsigular

The correct answer is: \(\zeta\) is singular and \(L\) is nonsigular

Question 12
Correct
Mark 1.00 out of 1.00
\(A=p m a t r i x 1 \&-1 \& 1\)
Let \(3 \&-2 \& 2 \quad\), then \(\operatorname{det}(A)=\)
\(-2 \& 1 \& 3[\backslash\) end?] pmatrix
Select one:
a. 0

ค. 8
© c. 4
od. 1

The correct answer is: 4

4 Quiz 3
Jump to...
Quiz 1 (chapter one)

Data retention summary
```

Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1202-MATH234-1 / General / Short Exam 1

```
```

 Started on Sunday, 11 April 2021, 8:35 AM
 State Finished
 Completed on Sunday, 11 April 2021, 9:05 AM
 Time taken 29 mins 19 secs
 Grade 10.00 out of 12.00 (83%)
    ```
Question 1
Correct
Mark 1.00 out of 1.00

If \(A B=A C\), and \(|A| \neq 0\), then
Select one:
() a. \(B=C\).b. \(A=C\)c. \(B \neq C\)

The correct answer is: \(B=C\).

\section*{Question 2}

Correct
Mark 1.00 out of 1.00

If \(A\) is an \(n \times n\)-matrix with positive entries, then \(\operatorname{det}(A) \geq 0\).
Select one:a. Falseb. True

The correct answer is: False

Question 3
Correct
Mark 1.00 out of 1.00

If \(x_{1}, x_{2}\) are solutions to \(A x=b\), then \(x_{1}-x_{2}\) is a solution of the system \(A x=b\).
Select one:
( a. Falseb. True

The correct answer is: False
```

Question 4

```

Correct
Mark 1.00 out of 1.00

An \(n \times n\) matrix \(A\) is invertible if and only if

Select one:a. All of the above
(o) b. there exists a matrix \(B\) such that \(A B=I\)c. \(|A|=0\)d. \(A x=0\) has nonzero solutions

The correct answer is: there exists a matrix \(B\) such that \(A B=I\)
```

Question 5
Correct
Mark 1.00 out of 1.00

```

If \(A\) is row equivalent to \(B\), then \(\operatorname{det}(A)=\operatorname{det}(B)\).

Select one:
(o) a. Falseb. True

The correct answer is: False
```

Question 6

```

Correct
Mark 1.00 out of 1.00

Let \(A\) be an \(n \times n\)-matrix in reduced row echelon form and \(A \neq I\), then
Select one:
(a) a. \(A\) is singularb. \(\operatorname{det}(A)=1\)C. \(A\) is the zero matrixd. \(A\) is nonsingular

The correct answer is: \(A\) is singular
```

Question }
Correct
Mark 1.00 out of 1.00

```

If \(U\) is the reduced row echelon form of an \(n \times n\) nonsingular matrix, then \(U=I_{n}\).

\section*{Select one:}
a. False
(o) b. True

The correct answer is: True
```

Question 8
Correct
Mark 1.00 out of 1.00

```

If \(A\) is singular and \(B\) is nonsingular \(n \times n\)-matrices, then \(A B\) is
Select one:
(a) aingular
b. nonsingularc. may or may not be singulard. none of the above

The correct answer is: singular

Question 9
Correct
Mark 1.00 out of 1.00

Let \(A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & 5 & 3\end{array}\right)\), then \(\operatorname{det}(A)=\)
Select one:a. 0b. 9c. 5
(od. 8

The correct answer is: 8

Question 10
Incorrect
Mark 0.00 out of 1.00

If \(A=\left(\begin{array}{ccc}1 & -2 & 5 \\ 4 & -5 & 8 \\ -3 & 3 & -3\end{array}\right)\) and \(b=\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)\), then the system \(A x=b\) is consistent if and only if
Select one:a. \(b_{1}-b_{2}-b_{3}=0\)
(a) b. \(b_{2}-b_{1}-b_{3}=0\)
c. \(b_{3}+b_{1}+b_{2}=0\)d. \(b_{3}-b_{1}-b_{2}=0\)

The correct answer is: \(b_{1}-b_{2}-b_{3}=0\)

Question 11
Incorrect
Mark 0.00 out of 1.00

Let \((1,2,0)^{T}\) and \((2,1,1)^{T}\) be the first two columns of a \(3 \times 3\) matrix \(A\) and \((1,1,1)^{T}\) be a solution of the system \(A x=(4,2,5)^{T}\). Then the third column of the matrix \(A\) is

Select one:
a. \((1,-1,-4)^{T}\).
b. \((4,-1,1)^{T}\).
c. \((1,-1,4)^{T}\).
© d. \((1,1,4)^{T}\).

The correct answer is: \((1,-1,4)^{T}\).
```

Question 12
Correct
Mark 1.00 out of 1.00

```

If \(A\) is a nonsingular and symmetric matrix, then
Select one:
(o) a. \(A^{-1}\) is nonsingular and symmetric
b. \(A^{-1}\) is nonsingular and not symmetric
c. \(A^{-1}\) is singular and not symmetric
d. \(A^{-1}\) is singular and symmetric

The correct answer is: \(A^{-1}\) is nonsingular and symmetric

4 Quiz 3
Jump to...

\section*{Data retention summary}
```

 Started on Sunday,9 May 2021, 11:36 AM
 State Finished
 Completed on Sunday, }9\mathrm{ May 2021, 12:59 PM
Time taken 1 hour 22 mins
Grade 30 out of 32(94%)

```
Question 1
Correct
Mark 1 out of 1

One of the follwoing sets is a subspace of \(P_{4}\)

Select one:a. \(S=\left\{f(x) \in P_{4}: f(1)=0\right\}\)b. \(S=\left\{f(x) \in P_{4}: f(1)=1\right\}\)c. \(S=\left\{f(x) \in P_{4}: f(0)=0\right.\), and \(\left.f^{\prime}(0)=2\right\}\)d. \(S=\left\{f(x) \in P_{4}: f(0)=1\right\}\)

The correct answer is: \(S=\left\{f(x) \in P_{4}: f(1)=0\right\}\)

Let \(A\) be a \(3 \times 3\)-matrix with \(a_{1}=a_{2}\). If \(b=a_{2}-a_{3}\), where \(a_{1}, a_{2}, a_{3}\) ar the columns of \(A\), then a solution to the system \(A x=b\) is

Select one:a. \(x=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\)b. \(x=\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right)\)c. \(x=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\)
© d. \(x=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\)

\section*{Question 3}

Correct
Mark 1 out of 1

Let \(A=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & a & 1 \\ 1 & 1 & 2\end{array}\right)\). the value(s) of \(a\) that make \(A\) nonsingular
Select one:
(o) a. \(a \neq 1\)b. \(a=\frac{1}{2}\)c. \(a \neq \frac{1}{2}\)d. \(a=1\)

The correct answer is: \(a \neq 1\)

If the row echelon form of \((A \mid b)\) is \(\left(\begin{array}{cccc:c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 1\end{array}\right)\) then the general form of the solutions is given by
Select one:\(x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)\)b. \(x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)\)c. \(x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)\)
©
\(x=\left(\begin{array}{c}-\alpha \\ -2+2 \alpha \\ 1-\alpha \\ \alpha\end{array}\right)\)

The correct answer is: \(x=\left(\begin{array}{c}-\alpha \\ -2+2 \alpha \\ 1-\alpha \\ \alpha\end{array}\right)\)

Question 5
Correct
Mark 1 out of 1

If \(A, B\) are \(n \times n\)-skew-symmetric matrices \(\left(A\right.\) is skew symmetric if \(A^{T}=-A\) ), then \(A B+B A\) is symmetric Select one:a. Falseb. True

The vectors \(\left\{x+1, x^{2}+x+1, x^{2}+2 x+1\right\}\) form a spanning set for \(P_{3}\).
Select one:
© a. Falseb. True

The correct answer is: True
```

Question 7

```

Correct
Mark 1 out of 1

If \(A B=0\), where \(A\) and \(B\) are \(n \times n\) nonzero matrices. Then

\section*{Select one:}
( a. both \(A, B\) are singular.
b. either \(A\) or \(B\) is nonsingularc. both \(A, B\) are nonsingular.d. either \(A=0\) or \(B=0\)

The correct answer is: both \(A, B\) are singular.
```

Question 8

```

Correct
Mark 1 out of 1

Let \(S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x+y=0\right\}\), then \(S\) is a subspace of \(\mathbb{R}^{2}\).
Select one:
(o) a. Trueb. False

The correct answer is: True

If \(A\) is symmetric and skew symmetric then \(A=0\). ( \(A\) is skew symmetric if \(A=-A^{T}\) ).

Select one:
( a. Falseb. True

The correct answer is: True
```

Question 10

```

Correct
Mark 1 out of 1

If \((A \mid b)=\left(\begin{array}{ccc:c}1 & -1 & -1 & 2 \\ -2 & 3 & 1 & -1 \\ 1 & 1 & \alpha & \beta\end{array}\right)\), then the system is inconsistent if and only if
Select one:a. \(\alpha \neq-3\) and \(\beta\) any numberb. \(\alpha=-3\) and \(\beta \neq 8\)c. \(\alpha \neq-3\) and \(\beta \neq 8\)d. \(\alpha=-3\) and \(\beta=8\)

The correct answer is: \(\alpha=-3\) and \(\beta \neq 8\)
```

Question 11

```

Correct
Mark 1 out of 1

If \(A\) and \(B\) are singular matrices, then \(A+B\) is also singular.
Select one:a. Falseb. True

The correct answer is: False
```

Question 12

```

Correct
Mark 1 out of 1

If \(A, B\) are \(n \times n\) nonsingular matrices, then \(A^{2}-B^{2}=(A+B)(A-B)\).
Select one:
© a. Falseb. True

The correct answer is: False
```

Question 13
Correct
Mark 1 out of 1

```

If \(v_{1}, v_{2}, \cdots, v_{k}\) are vectors in a vector space \(V\), and
\(\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k}\right)=\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k-1}\right)\), then \(v_{k}\) can be written as a linear combination of \(v_{1}, v_{2}, \cdots, v_{k-1}\)
Select one:
© a. Trueb. False

The correct answer is: True
```

Question 14
Correct
Mark 1 out of 1

```

If \(A, B, C\) are \(n \times n\)-matrices with \(A\) nonsingular and \(A B=A C\), then \(B=C\)

\section*{Select one:}a. False
(ob. True

The correct answer is: True
```

Question 15

```

Correct
Mark 1 out of 1

The adjoint of the matrix \(\left(\begin{array}{cc}-5 & -2 \\ -4 & -3\end{array}\right)\) is
Select one:
a. \(\left(\begin{array}{cc}5 & -4 \\ -2 & 3\end{array}\right)\)
b. \(\left(\begin{array}{cc}-3 & 2 \\ 4 & -5\end{array}\right)\)
c. \(\left(\begin{array}{cc}-5 & 3 \\ 2 & -4\end{array}\right)\)
d. \(\left(\begin{array}{ll}-4 & -2 \\ -3 & -5\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{cc}-3 & 2 \\ 4 & -5\end{array}\right)\)
```

Question 16

```

Correct
Mark 1 out of 1

If \(y, z\) are solutions to \(A x=b\), then \(\frac{1}{4} y+\frac{3}{4} z\) is a solution of the system \(A x=b\).

\section*{Select one:}
- a. True
b. False

The correct answer is: True

Question 17
Correct
Mark 1 out of 1

If \(A\) is a \(4 \times 4\)-matrix and \(x=\left(\begin{array}{l}2 \\ 3 \\ 0 \\ 1\end{array}\right)\) is a solution to the system \(A x=0\), then \(A\) is singular.
Select one:a. False
( -1
b. True

The correct answer is: True
```

Question 18

```

Correct
Mark 1 out of 1

If \((2 A)^{-1}=\left(\begin{array}{ll}3 & 2 \\ 5 & 4\end{array}\right)\), then \(A=\)
Select one:
(o). \(\left(\begin{array}{cc}1 & \frac{-1}{2} \\ \frac{-5}{4} & \frac{3}{4}\end{array}\right)\)
b. \(\left(\begin{array}{cc}2 & -1 \\ \frac{-5}{2} & \frac{3}{2}\end{array}\right)\)
c. \(\left(\begin{array}{cc}4 & -2 \\ -5 & 3\end{array}\right)\)
d. \(\left(\begin{array}{cc}8 & -4 \\ -10 & 6\end{array}\right)\)

The correct answer is: \(\left(\begin{array}{cc}1 & \frac{-1}{2} \\ \frac{-5}{4} & \frac{3}{4}\end{array}\right)\)
```

Question 19

```

Correct
Mark 1 out of 1

Let \(V\) be a vector space, \(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\) a spanning set for \(V\), and \(v \in V\), then the vectors \(\left\{v_{1}, v_{2}, \ldots, v_{n}, v\right\}\) form a spanning set for \(V\).

Select one:a. Falseb. True

The correct answer is: True
```

Question 20
Correct
Mark 1 out of 1

```

If \(A B=A C\), and \(|A| \neq 0\), then

Select one:a. \(B \neq C\)b. \(A=0\)
( c. \(B=C\).d. \(A=C\)

The correct answer is: \(B=C\).
```

Question 21
Correct
Mark 1 out of 1

```

In the \(n \times n\)-linear system \(A x=b\), if \(A\) is singular and \(b\) is a linear combination of the columns of \(A\) then the system has

\section*{Select one:}a. exactly two solutionsb. a unique solutionc. infinitely many solutionsd. no solution

If \(A\) is a \(4 \times 3\) matrix such that \(N(A)=\{0\}\), and \(b\) can be written as a linear combination of the columns of \(A\), then
Select one:
(0) a. The system \(A x=b\) has exactly one solutionb. The system \(A x=b\) is inconsistentc. The system \(A x=b\) has infinitely many solutionsd. The system \(A x=b\) has exactly two solutions

The correct answer is: The system \(A x=b\) has exactly one solution
```

Question 23
Correct
Mark 1 out of 1

```

If \(E\) is an elementary matrix then one of the following statements is false

Select one:
a. \(E^{-1}\) is an elementary matrix.
( b. \(E\) is diagonal matrix.c. \(E\) is nonsingular.d. \(E^{T}\) is an elementary matrix.

The correct answer is: \(E\) is diagonal matrix.
```

Question }2

```

Correct
Mark 1 out of 1

The vectors \(\left\{(1,-1,1)^{T},(1,-2,2)^{T},(1,-2,1)^{T}\right\}\) form a spanning set for \(\mathbb{R}^{3}\).

Select one:
a. False
(ob. True

If \(A\) is a \(3 \times 3\) matrix with \(\operatorname{det}(A)=-3\). Then \(\operatorname{det}(\operatorname{adj}(A))=\)
Select one:a. -3 .b. -27 .c. 9 .d. -9 .

The correct answer is: 9 .
```

Question 26
Correct
Mark 1 out of 1

```

If \(A\) is a singular matrix, then \(A\) can be written as a product of elementary matrices.
Select one:a. Trueb. False

The correct answer is: False
```

Question 27

```

Correct
Mark 1 out of 1

Let \(A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & -1 & 3\end{array}\right)\), then \(\operatorname{det}(A)=\)
Select one:a. 5b. 3c. 2d. 0

Let \(S=\{f \in C[-1,1]: f\) is an odd function \(\}\), then \(S\) is a subspace of \(C[-1,1]\).

Select one:
© a. Trueb. False

The correct answer is: True
```

Question }2

```

Correct
Mark 1 out of 1

An \(n \times n\) matrix \(A\) is singular if and only if
Select one:a. there exists a matrix \(B\) such that \(A B=I\)b. \(A=I\)c. \(A x=0\) has only the zero solutiond. \(|A|=0\)

The correct answer is: \(|A|=0\)
```

Question 30
Correc†
Mark 1 out of 1

```

If \(A\) is a singular \(n \times n\)-matrix, \(b \in \mathbb{R}^{n}\), then the system \(A x=b\)

Select one:
© a. has either no solution or an infinite number of solutions
b. has infinitely many solutions.c. has a unique solutiond. is inconsistent

If \((A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 0 & 3 & 2 & 1\end{array}\right)\) is the augmented matrix of the system \(A x=b\) then the system has no solution
Select one:a. Falseb. True

The correct answer is: True
```

Question 32

```

Correct
Mark 1 out of 1

Let \((1,2,0)^{T}\) and \((2,1,1)^{T}\) be the first two columns of a \(3 \times 3\) matrix \(A\) and \((1,1,1)^{T}\) be a solution of the system \(A x=(1,1,-2)^{T}\). Then the third column of the matrix \(A\) is

Select one:
a. \((1,2,-1)^{T}\).
(ob. \((-2,-2,-3)^{T}\).c. \((2,2,3)^{T}\).d. \((-1,0,1)^{T}\).

The correct answer is: \((-2,-2,-3)^{T}\).

Jump to...```


[^0]:    Question 7
    Correct
    Mark 1.00 out of 1.00

